• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

移动简谐荷载作用下饱和土体中圆形隧道和轨道结构的动力分析

袁宗浩, 蔡袁强, 史吏, 孙宏磊, 曹志刚

袁宗浩, 蔡袁强, 史吏, 孙宏磊, 曹志刚. 移动简谐荷载作用下饱和土体中圆形隧道和轨道结构的动力分析[J]. 岩土工程学报, 2016, 38(2): 311-322. DOI: 10.11779/CJGE201602015
引用本文: 袁宗浩, 蔡袁强, 史吏, 孙宏磊, 曹志刚. 移动简谐荷载作用下饱和土体中圆形隧道和轨道结构的动力分析[J]. 岩土工程学报, 2016, 38(2): 311-322. DOI: 10.11779/CJGE201602015
YUAN Zong-hao, CAI Yuan-qiang, SHI Li, SUN Hong-lei, CAO Zhi-gang. Response of rail structure and circular tunnel in saturated soil subjected to harmonic moving load[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 311-322. DOI: 10.11779/CJGE201602015
Citation: YUAN Zong-hao, CAI Yuan-qiang, SHI Li, SUN Hong-lei, CAO Zhi-gang. Response of rail structure and circular tunnel in saturated soil subjected to harmonic moving load[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 311-322. DOI: 10.11779/CJGE201602015

移动简谐荷载作用下饱和土体中圆形隧道和轨道结构的动力分析  English Version

基金项目: 国家自然科学基金项目(11372274,51208460,51478424)
详细信息
    作者简介:

    袁宗浩(1990- ),男,博士研究生,主要从事土动力学方面的研究工作。E-mail: yuanzh@zju.edu.cn。

Response of rail structure and circular tunnel in saturated soil subjected to harmonic moving load

  • 摘要: 采用解析法研究了移动简谐荷载作用下饱和土全空间中圆形衬砌隧道和轨道结构的动力响应,用无限长圆柱壳模拟衬砌,用Biot饱和多孔介质理论模拟土体,用Euler梁理论模拟钢轨、浮置板并组成周期性的两层叠合梁单元,结合轨道与衬砌仰拱处的力和位移连续条件,实现轨道结构与衬砌及周围饱和土体的耦合。通过算例分析了荷载移动速度、自振频率对轨道结构位移、饱和土体位移及孔压的影响,对比了连续浮置板轨道和离散浮置板轨道的动力特性。结果表明:离散浮置板轨道情形下,轨道结构和饱和土体响应频谱中存在由荷载周期通过不连续浮置板而引发的参数激励;荷载自振频率接近轨道结构固有频率时产生共振,对轨道结构和饱和土位移、孔压响应均有较大影响;离散浮置板轨道和连续浮置板轨道动力特性有显著差异,当荷载频率接近有限长浮置板形成驻波的频率时,二者对应的自由场响应区别明显;增大衬砌厚度可以显著减小饱和土位移响应。
    Abstract: Dynamic responses of the rail structure and underground railway tunnel in the saturated soil under moving harmonic load are investigated by using the analytical method. The tunnel is simulated as a thin cylindrical shell with infinite length, and the soil is modeled as a saturated poroelastic medium using the Biot’s theory. The infinite track with periodic double beam units is formulated as a periodic structure. The tracks and soil medium are coupled by the force and displacement compatibility conditions at the tunnel invert. The effects of load velocity and external frequency on track responses and displacements and pore pressure of saturated soil are investigated. The dynamic characteristics of floating slab tracks with discontinuous and continuous slabs are analyzed. It is found that there exists a parametric excitation in the spectra of track and soil responses due to the moving load periodically passing through the discontinuous slabs. Resonance phenomenon occurs when the external frequency of load is equal to the natural frequency of the tracks. The dynamic characteristics of floating slab tracks with discontinuous and continuous slabs have significant difference. The displacements and pore pressures of saturated soil will be amplified at the natural frequency arising from the standing waves propagating in the discontinuous slabs. The displacements of the saturated soil can be effectively reduced by increasing the tunnel thickness.
  • [1] METRIKINE A V, VROUWENVELDER A C W M. Surface ground vibration due to a moving rain in a tunnel two-dimensional model[J]. Journal of Sound and Vibration, 2000, 234(1): 43-66.
    [2] FORREST J A, HUNT H E M. A three dimensional tunnel model for calculation of train-induced ground vibration[J]. Journal of Sound and Vibration, 2006, 294(4/5): 678-705.
    [3] BALENDRA T, CHUA K H, LO K W, et al. Steady-state vibration of subway-soil-building system[J]. Journal of Engineering Mechanics, 1989, 115(1): 145-162.
    [4] SHENG X, JONES C J C, THOMPSON D J. Prediction of ground vibration from trains using the wavenumber finite and boundary element methods[J]. Journal of Sound and Vibration, 2006, 293: 575-586.
    [5] 刘维宁, 夏 禾, 郭文军. 地铁列车振动的环境响应[J]. 岩石力学与工程学报, 1996, 15(增刊): 586-593. (LIU Wei-ning, XIA He, GUO Wen-jun. Study of vibration effects of underground trains on surrounding environments[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(S0): 586-593. (in Chinese))
    [6] DEGRANDE G, CLOUTEAU D, OTHMAN R, et al. A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element- boundary element formulation[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 645-666.
    [7] HUNG H H, CHEN G H, YANG Y B. Effect of railway roughness on soil vibrations due to moving trains by 2.5D finite/infinite element approach[J]. Engineering Structures, 2013, 57: 254-266.
    [8] HUNG H H, YANG Y B. Analysis of ground vibrations due to underground trains by 2.5D finite infinite element approach[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(3): 327-335.
    [9] BIAN X C, JIN W F, JIANG H G. Ground-borne vibrations due to dynamic loadings from moving trains in subway tunnels[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2012, 13(11): 870-876.
    [10] CAI Y Q, CAO Z G, SUN H L, et al. Dynamic response of pavements on poroelastic half-space soil medium to a moving traffic load[J]. Computers and Geotechnics, 2009, 36(1/2): 52-60.
    [11] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Part I: low-frequency range[J]. Journal of the Acoustical Society of America, 1956, 28(2): 168-178.
    [12] LU J F, JENG D S. Dynamic response of a circular tunnel embedded in a saturated poroelastic medium due to a moving load[J]. Journal of Vibration and Acoustics, 2006, 128(6): 750-756.
    [13] 黄晓吉, 扶名福, 徐 斌. 移动环形荷载作用下饱和土中圆形衬砌隧洞动力响应研究[J]. 岩土力学, 2012, 33(3): 892-898. (HUANG Xiao-ji, FU Ming-fu, XU Bin. Dynamic response of a circular lining tunnel in saturated soil due to moving ring load[J]. Rock and Soil Mechanics, 2012, 33(3): 892-898. (in Chinese))
    [14] 刘干斌, 谢康和, 施祖元. 黏弹性饱和多孔介质中圆柱孔洞的频域响应[J]. 力学学报, 2004, 36(5): 557-563. (LIU Gan-bin, XIE Kang-he, SHI Zu-yuan. Frequency response of a cylindrical cavity in poro-viscoelastic saturated medium[J]. Acta Mechanica Sinica, 2004, 36(5): 557-563. (in Chinese))
    [15] 高广运, 何俊峰, 李 佳. 地铁运行引起的饱和土地基动力响应[J]. 浙江大学学报(工学版), 2010, 44(10): 1925-1930. (GAO Guang-yun, HE Jun-feng, LI Jia. Dynamic response induced by running subway in saturated ground[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(10): 1925-1930. (in Chinese))
    [16] 高广运, 何俊峰, 杨成斌, 等. 2.5维有限元分析饱和土地基列车运行引起的地面振动[J]. 岩土工程学报, 2011, 33(2): 234-241. (GAO Guang-yun, HE Jun-feng, YANG Cheng-bin, et al. Ground vibration induced by trains moving on saturated ground using 2.5 D FEM[J]. Chinese Journal of Geothechnical Engineering, 2011, 33(2): 234-241. (in Chinese))
    [17] 曾 晨, 孙宏磊, 蔡袁强, 等. 简谐荷载作用下饱和土体中圆形衬砌隧道三维动力响应分析[J]. 岩土力学, 2014, 35(4): 1147-1156. (ZENG Chen, SUN Hong-lei, CAI Yuan-qiang, et al. Analysis of three-dimensional dynamic response of a circular lining tunnel in saturated soil to harmonic loading[J]. Rock and Soil Mechanics, 2014, 35(4): 1147-1156. (in Chinese))
    [18] HUSSIEN M F M, HUNT H E M. A numerical model for calculating vibration due to a harmonic moving load on a floating-slab track with discontinuous slabs in an underground railway tunnel[J]. Journal of Sound and Vibration, 2009, 321(1/2): 363-374.
    [19] THEODORAKOPOULOS D D. Dynamic analysis of a poroelastic half-plane soil medium under moving loads[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(7): 521-533.
    [20] 马龙祥, 刘维宁, 刘卫丰, 等. 移动谐振荷载作用下浮置板轨道的动力响应[J]. 工程力学, 2012, 29(12): 334-341. (MA Long-xiang, LIU Wei-ning, LIU Wei-feng, et al. Dynamic response of floating slab track due to a harmonic moving load[J]. Engineering Mechanics, 2012, 29(12): 334-341. (in Chinese))
    [21] HUSSIEN M F M, HUNT H E M. Modelling of floating-slab tracks with continous slabs under oscillating moving loads[J]. Journal of Sound and Vibration, 2006, 297(1/2): 37-54.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-25
  • 发布日期:  2016-02-24

目录

    /

    返回文章
    返回