• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

无黏性土滑动和堆积特性的模型试验研究

雷先顺, 谢沃, 卢坤林, 朱大勇, 陈菊香

雷先顺, 谢沃, 卢坤林, 朱大勇, 陈菊香. 无黏性土滑动和堆积特性的模型试验研究[J]. 岩土工程学报, 2016, 38(2): 226-236. DOI: 10.11779/CJGE201602005
引用本文: 雷先顺, 谢沃, 卢坤林, 朱大勇, 陈菊香. 无黏性土滑动和堆积特性的模型试验研究[J]. 岩土工程学报, 2016, 38(2): 226-236. DOI: 10.11779/CJGE201602005
LEI Xian-shun, XIE Wo, LU Kun-lin, ZHU Da-yong, CHEN Ju-xiang. Model tests of sliding and accumulation characteristics of cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 226-236. DOI: 10.11779/CJGE201602005
Citation: LEI Xian-shun, XIE Wo, LU Kun-lin, ZHU Da-yong, CHEN Ju-xiang. Model tests of sliding and accumulation characteristics of cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 226-236. DOI: 10.11779/CJGE201602005

无黏性土滑动和堆积特性的模型试验研究  English Version

基金项目: 国家自然科学基金项目(51179043,41402256)
详细信息
    作者简介:

    雷先顺(1990- ),男,硕士研究生,主要从事边坡工程方面的研究工作。E-mail: leixianshun@162.com。

    通讯作者:

    卢坤林

Model tests of sliding and accumulation characteristics of cohesionless soil

  • 摘要: 采用室内模型试验,研究了无黏性土堆积体在无侧限条件下沿斜面的滑动和堆积运动过程。探索了堆积体体积、粒径、形状,坡高,启动区坡度,坡脚约束角,滑面摩擦系数等指标对滑坡运动最终堆积参数(冲程,宽度,厚度,面积)的影响。试验结果表明:随着堆积体体积、颗粒粒径、坡高、启动区坡度、坡脚约束角变大和滑面摩擦系数减小,滑坡的最终堆积范围均会变大。无黏性土在斜面上的横向扩展运动有两种形式:一种是保持一定角度下滑,直至到达坡底;另一种是横向扩展到一定宽度后,沿垂直于坡脚线的方向向下滑动。堆积体体积、滑面摩擦系数、颗粒形状、坡脚约束角对冲程和堆积面积的影响比较显著,而坡高和体积对堆积宽度的影响比较显著。试验研究成果为深入研究滑坡冲程及堆积形态提供了初步的依据。
    Abstract: By using laboratory model tests, the unconstrained sliding and accumulation of gravel on an inclined board are studied. The influences of various parameters of volume, gravel size, shape of accumulation, height of slope, angle of initiation region, constraint angle of slope toe and friction coefficient of sliding surface on the characteristics of final accumulation (run-out, width, thickness, and area) are investigated. The results show that with the increase of volume of accumulation, grain size, height of slope, angle of initiation region and constrained angle of slope toe and the decrease of friction coefficient of sliding surface, the scope of the final accumulation is expanded. The lateral extension motion of gravel on the slope has two different mechanisms: sliding to the slope toe with a certain angle, and sliding downward along the direction perpendicular to the slope toe when the lateral extension reaches a certain width. It is confirmed that the volume of accumulation, friction coefficient of sliding surface, gravel shape and constrained angle of slope toe are the most significant factors to influence the run-out and accumulation area, and the height of slope and volume of accumulation have significant influences on the width. Finally, the test results may provide a preliminary basis for further studies on landslide run-out and accumulation characteristics.
  • [1] HSÜ K J. Catastrophic debris streams (sturzstroms) generated by rockfalls[J]. Geological Society of America Bulletin, 1975, 86(1): 129-140.
    [2] DAVIES T R, MCSAVENEY M J, HODGSON K A. A fragmentation-spreading model for long-runout rock avalanches[J]. Canadian Geotechnical Journal, 1999, 36(6): 1096-1110.
    [3] DAVIES T R H. Spreading of rock avalanche debris by mechanical fluidization[J]. Rock Mechanics, 1982, 15(1): 9-24.
    [4] OKURA Y, KITAHARA H, SAMMORI T. Fluidization in dry landslides[J]. Engineering Geology, 2000, 56(3): 347-360.
    [5] HUNGR O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal, 1995, 32(4): 610-623.
    [6] CRUDEN D M, HUNGR O. The debris of the Frank Slide and theories of rockslide-avalanche mobility[J]. Canadian Journal of Earth Sciences, 1986, 23(3): 425-432.
    [7] MCDOUGALL S, HUNGR O. A model for the analysis of rapid landslide motion across three-dimensional terrain[J]. Canadian Geotechnical Journal, 2004, 41(6): 1084-1097.
    [8] HUTTER K, KOCH T. Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions[J]. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 1991, 334(1633): 93-138.
    [9] KENT P E. The Transport mechanism in catastrophic rock falls[J]. Journal of Geology, 1966, 74(1): 79-83.
    [10] SCHEIDDEGER A E. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics, 1973, 5(4): 231-236.
    [11] ZHOU Jia-wen, CUI Peng, FANG Hua. Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake China[J]. Landslides, 2013, 10(3): 331-342.
    [12] 鲁晓兵, 张旭辉, 崔 鹏. 碎屑流沿坡面运动的数值模拟[J]. 岩土力学, 2009, 30(增刊2): 524-527. (LU Xiao-bing, ZHANG Xu-hui, CUI Peng. Numerical simulation of clastic grain flow along a slope[J]. Rock and Soil Mechanics, 2009, 30(S2) : 524-527. (in Chinese))
    [13] OKURA Y, KITAHARA H, SAMMORI T, et al. The effects of rock fall volume on runout distance[J]. Engineering Geology, 2000, 58(2): 109-124.
    [14] DAVIES T R, MCSAVENEY M J. Runout of dry granular avalanches[J]. Canadian Geotechnical Journal, 1999, 36(2): 313-320.
    [15] MANZELLA I, LABIOUSE V. Qualitative analysis of rock avalanches propagation by means of physical modelling of not constrained gravel flows[J]. Rock Mechanics and Rock Engineering, 2008, 41(1): 133-151.
    [16] MANZELLA I, LABIOUSE V. Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches[J]. Engineering Geology, 2009, 109(1): 146-158.
    [17] MANCARELLA D, HUNGR O. Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers[J]. Canadian Geotechnical Journal, 2010, 47(8): 827-841.
    [18] 吴 越, 刘东升, 李明军. 滑体下滑及冲击受灾体过程中的能耗规律模型试验[J]. 岩石力学与工程学报, 2011, 30(4): 693-701. (WU Yue, LIU Dong-sheng, LI Ming-jun. Landslide model experiment for energy dissipation law in sliding and impact processes[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 693-701. (in Chinese))
    [19] 刘涌江, 胡厚田, 赵晓颜. 高速滑坡岩体碰撞效应的试验研究[J]. 岩土力学, 2004, 25(2): 255-260. (LIU Yong-jiang, HU Hou-tian, ZHAO Xiao-yan. Experimental study of impact effect of high-speed landslide[J]. Rock and Soil Mechanics, 2004, 25(2): 255-260. (in Chinese))
    [20] 徐 超, 廖星樾, 叶观宝, 等. HDPE膜界面摩擦特性的斜板仪试验研究[J]. 岩土工程学报, 2006, 28(8): 989-993. (XU Chao, LIAO Xing-yue, YE Guan-bao, et al. Researches on frictional properties of HDPE geomembrane using tilt table device[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 989-993. (in Chinese))
    [21] 樊晓一, 乔建平. “坡”、“场”因素对大型滑坡运动特征的影响[J]. 岩石力学与工程学报, 2010, 29(11): 2337-2348. (FAN Xiao-yi, QIAO Jian-ping. Influence of landslide and ground factors on large-scale landslide movement[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11): 2337-2348. (in Chinese))
    [22] MELOSH H J. Giant rock avalanches[J]. Nature, 1990, 348(6301): 483-484.
  • 期刊类型引用(10)

    1. 张盛行,汤雷,朱春光,石蓝星,明攀. 瞬变电磁探测土质堤坝渗漏病害的正演模拟与工程应用. 水利水电技术(中英文). 2025(S1): 392-397 . 百度学术
    2. 施晓萍,周柏兵,郭庆鑫,李家群. 机载激光雷达在堤防隐患巡查试验中的应用. 水利发展研究. 2024(01): 86-93 . 百度学术
    3. 黄曙光. 英德庄洲防洪堤水毁应急抢险修复策略. 云南水力发电. 2024(03): 99-102 . 百度学术
    4. 涂建伟,蒋德成,崔家仲,何孟芸,贾刚. 面向岸堤坍塌全过程的应急防护措施与装置. 人民长江. 2024(04): 200-206 . 百度学术
    5. 薛凯喜,李明吉,曹凯,胡艳香. 鄱阳湖圩堤管涌险情分析与防治措施. 河北工程大学学报(自然科学版). 2024(02): 95-104 . 百度学术
    6. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 . 百度学术
    7. 陈昱行,高至飞,胡朝鹏,宋国策. 基于无人机多模态数据的铁路防洪隐患排查系统研发. 铁道勘察. 2024(05): 156-162 . 百度学术
    8. 蒋水华,陈颖霞,熊威,李彧玮,常志璐,李锦辉,李文欢. 堤防工程险情风险评估与管控研究进展. 人民珠江. 2024(11): 1-13 . 百度学术
    9. 刘阳,涂善波,李亚楠. 双线盾构隧道穿越影响下的黄河堤防沉降监测研究. 陕西水利. 2023(10): 135-138 . 百度学术
    10. 涂善波,刘阳. 基于多源监测技术的穿黄隧道堤防安全影响评价. 水科学与工程技术. 2023(05): 73-76 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  417
  • HTML全文浏览量:  3
  • PDF下载量:  465
  • 被引次数: 13
出版历程
  • 收稿日期:  2015-02-02
  • 发布日期:  2016-02-24

目录

    /

    返回文章
    返回