• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

波浪荷载下海底单桩与土共同作用的数值分析

胡翔, 陈锦剑

胡翔, 陈锦剑. 波浪荷载下海底单桩与土共同作用的数值分析[J]. 岩土工程学报, 2015, 37(zk2): 217-221. DOI: 10.11779/CJGE2015S2041
引用本文: 胡翔, 陈锦剑. 波浪荷载下海底单桩与土共同作用的数值分析[J]. 岩土工程学报, 2015, 37(zk2): 217-221. DOI: 10.11779/CJGE2015S2041
HU Xiang, CHEN Jing-jian. Numerical analysis of interactive behavior between pile and seabed soil under wave load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 217-221. DOI: 10.11779/CJGE2015S2041
Citation: HU Xiang, CHEN Jing-jian. Numerical analysis of interactive behavior between pile and seabed soil under wave load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 217-221. DOI: 10.11779/CJGE2015S2041

波浪荷载下海底单桩与土共同作用的数值分析  English Version

基金项目: 国家自然科学基金项目(41372282); 上海市浦江人才计划; 项目(13PJD017)
详细信息
    作者简介:

    胡 翔(1990- ),男,硕士研究生,主要从事岩土工程数值模拟等方面的学习和研究工作。

Numerical analysis of interactive behavior between pile and seabed soil under wave load

  • 摘要: 采用三维数值分析方法研究了波浪荷载作用下饱和海床与埋入单桩的相互作用特性,考虑了海床饱和土体的流固耦合和桩土界面的接触特征,并采用准静态方法模拟短峰波作用于海床的三维波压力分布与变化特征。根据数值分析结果,研究了波浪荷载作用下海床土体内的孔压和应力变化规律、海底单桩的变形和内力分布情况,探讨了桩土接触面不同处理方式的影响,并与自由海床的结果进行比较。结果表明桩端附近土体的孔压出现局部放大现象,桩身水平位移主要受土体位移影响。采用桩土耦合模型将夸大土体内的附加应力和孔压变化,且桩身内力和桩底的应力集中现象也更为明显。
    Abstract: An FEM model for a single pile embedded in a saturated seabed is proposed to study the interactive behavior between pile and seabed soil. Fluid-soil coupling and contact behavior on interface is considered, and the quasi-static method is adopted to simulate the crested short wave-induced load on seabed surface. Based on the numerical results, responses of pore water pressure and stress seabed soils under the wave load are investigated, and the deformation and internal force of the single pile are discussed. Two different methods to simulate the pile-soil interface are discussed with a comparison to the greenfield seabed model. The results show that the pore water pressure increases obviously near the bottom of pile, and the lateral displacement of pile is mainly affected by soil. Moreover, the pore water pressure and stress are overestimated by the pile-soil coupled model, and the stress concentration at bottom of pile is more obvious than that by the pile-soil contact model.
  • [1] BEA R G, WRIGHT S G. Wave-induced slides in south pass block 70, Mississippi Delta[J]. Journal of Geotechnical Engineering, 1983, 109(4): 619-644.
    [2] 赵 刚. 胜利作业三号平台“9.7”倾斜事故分析[J]. 现代职业安全, 2011(7): 100-102. (ZHAO Gang. Case study about ‘9.7’ inclination of the Shengli No.3 work platform[J]. Mordern Occupation Safety, 2011(7): 100-102. (in Chinese))
    [3] 郑东生. 波浪和海床交互作用的多孔介质理论[M]. 上海:上海交通大学出版社, 2013. (JENG Dong-sheng. Porous Models for Wave-seabed Interactions[M]. Shanghai: Shanghai JiaoTong University Press, 2013. (in Chinese))
    [4] YAMAMOTO. On the response of a pore-elastic bed to water waves[J]. Journal of Fluid Mechanics, 1978, 87(1): 193-206.
    [5] JENG D S, HSU J R C. Wave-induced soil response in a nearly saturated seabed of finite thickness[J]. Géotechnique, 1996, 46(3): 427-440.
    [6] JENG D S. Wave-induced seafloor dynamics[J]. Applied Mechanics Review, 2003, 56(4): 407-429.
    [7] LU J F, JENG D S. Poroelastic model for pile-soil interaction in a half-space porous medium due to seismic waves[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(1): 1-41.
    [8] BHATTACHARYA S. Experimental validation of soil-structure interaction of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5): 805-816
    [9] LI X J, GAO F P,YANG B. Wave-induced pore pressure and soil liquefaction around pile foundation[J]. International Journal of Offshore and Polar Engineering, 2011, 21(3): 233-239.
    [10] YANG B, GAO F P. Experimental study on vortex-induced vibrations of submarine pipeline near seabed boundary in ocean currents[J]. China Ocean Engineering, 2006, 20(1): 113-121.
    [11] HSU J R C, JENG D S. Short-crested wave-induced soil response in a porous seabed of infinite thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17(8): 553-576.
    [12] HSU J R C, JENG D S. Oscillatory soil response and liquefaction in an unsaturated layered seabed[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(12): 825-849.
    [13] ZIENKIEWICZ O C. Drained, undrained, consolidating and dynamic behaviour assumptions in soils[J]. Géotechnique, 1980, 30(4): 385-395.
    [14] JENG D S, CHA D H. Effects of dynamic soil behavior and save non-linearity on the wave-induced pore pressure and effective stresses in porous seabed[J]. Ocean Engineering, 2003, 30: 2065-2089
    [15] HSU J R C. Third-order approximation to short-crested waves[J]. Journal of Fluid Mechanics, 1979, 90(1): 179-196.
    [16] GATMIRI B. A simplified finite element analysis of wave-induced effective stress and pore pressures in permeable sea beds[J]. Géotechnique, 1990, 40(1): 15-30.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-25
  • 发布日期:  2015-07-24

目录

    /

    返回文章
    返回