• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

掺砾成都黏土的本构模型及其在FLAC3D中的实现

罗会武, 韩磊, 刘恩龙, 陈生水, 傅中志

罗会武, 韩磊, 刘恩龙, 陈生水, 傅中志. 掺砾成都黏土的本构模型及其在FLAC3D中的实现[J]. 岩土工程学报, 2015, 37(zk1): 218-224. DOI: 10.11779/CJGE2015S1041
引用本文: 罗会武, 韩磊, 刘恩龙, 陈生水, 傅中志. 掺砾成都黏土的本构模型及其在FLAC3D中的实现[J]. 岩土工程学报, 2015, 37(zk1): 218-224. DOI: 10.11779/CJGE2015S1041
LUO Hui-wu, HAN Lei, LIU En-long, CHEN Sheng-shui, FU Zhong-zhi. Constitutive model for Chengdu clay with some graves and its implementation in FLAC3D[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 218-224. DOI: 10.11779/CJGE2015S1041
Citation: LUO Hui-wu, HAN Lei, LIU En-long, CHEN Sheng-shui, FU Zhong-zhi. Constitutive model for Chengdu clay with some graves and its implementation in FLAC3D[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 218-224. DOI: 10.11779/CJGE2015S1041

掺砾成都黏土的本构模型及其在FLAC3D中的实现  English Version

基金项目: 国家自然科学基金项目(91215301)
详细信息
    作者简介:

    罗会武(1988- ),男,硕士研究生,主要从事岩土工程方面的科研工作。

Constitutive model for Chengdu clay with some graves and its implementation in FLAC3D

  • 摘要: 分析掺砾石成都黏土的三轴试验结果得到如下结论:试样表现为应变硬化特性,但偏应力增速较快,且在轴向应变达到较小值时偏应力就达到了稳定值,而体变随轴向应变的增加而平缓的增加。可见,试样在轴向应变较小时发生轻微的剪胀而减缓体变的增加速率;当达到塑性流动时,试件发生明显的剪缩而继续引起体变的增加。修正剑桥模型描述此类特性有所欠缺。以修正剑桥模型在FLAC3D中的实现过程为基础,将魏汝龙模型写入FLAC3D中来模拟软硬程度不同的土并引入了黏聚力c,考虑了塑性体应变硬化及剪应变引起的体变,模拟结果表明修改的模型能较好的反映此类土的特性。将试验值对比模拟值,发现随着砾石含量的增加,试样变硬,保水性变差。
    Abstract: The results of the triaxial shear tests on Chengdu clay with some gravels show that: (i) The samples behave as strain-hardening type while the deviator stress increases rapidly and reaches steady state in the small axial strain level. (ii) The volumetric strain increases slowly and does not achieve stability when the axial strain increases at the same speed. So the samples behave slightly dilatancy with the increasing speed of the volumetric strain within small axial strain. They behave apparent contraction with the increasing volumetric strain when plastic flow occurs. As the capability of the modified Cam-clay model is insufficient to describe such features well, Wei Rulong model considering the cohesion c is incorporated into FLAC3D to stimulate the hardening properties of soils, which considers the influence of the plastic volumetric strain hardening and the volumetric strain caused by the shearing strain based on the performance of modified Cam-clay model embedded in the FLAC3D. The simulated results show that the proposed model can reflect the results of the triaxial shear tests well. By comparing the test data with the calculated results, it is indicated that the strength of the samples increases, and its water retentivity becomes weaker with the increase of the contents of gravels.
  • [1] 袁晓明, 曹振中, 孙 锐, 等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报, 2009, 28(6): 1288-1296. (YUAN Xiao-ming, CAO Zhen-zhong, SUN Rui, et al. Preliminary research on liquefaction characteristics of wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1288-1296. (in Chinese))
    [2] 韩金良, 吴树人, 何淑君, 等. 5.12 汶川8级地震次生地质灾害的基本特征及其形成机制浅析[J]. 地学前缘, 2009, 16(3): 306-326. (HAN Jin-liang, WU Shu-ren, HE Shu-jun, et al. Basal characteristics and formation mechanisms of geological hazards triggered bythe May 12 , 2008 Wenchuan earthquake with a moment magnitude of 8.0[J]. Earth Science Frontiers, 2009, 16(3): 306-326. (in Chinese))
    [3] 王恭先, 徐峻龄, 刘光代. 滑坡学与滑坡防治技术[M]. 北京: 中华人民共和国铁道出版社, 2007. (WANG Gong-xian, XU Jun-ling, LIU Guang-dai. Landslidology and landslide control technique[M]. Beijing: China Railway Publishing House, 2007. (in Chinese))
    [4] HARDIN. One-D strain in normally consolidated cohesionlesssoils[J]. Geotech Eng Div, ASCE, 1978, 113(12): 1449-1467.
    [5] PESTANA J M, WHITTLE A J. Compressiond model for cohesionlesssoils[J]. Géotechnique, 1995, 45(4): 611-631.
    [6] SKEMPTON A W. Residual strength of clays in landslides folded strata and the laboratory[J]. Géotechnique, 1985, 35(1): 3-18.
    [7] MEHDI A, SHAHABODDIN S, YASROBI. Effects of plastic fines on the instability of sand[J]. Soil Dynamics and Earthquake Engineering, 2010, 30: 61-67.
    [8] 沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2009: 51-60. (SHEN Zhu-jiang. Theoretical soil mechanics[M]. Beijing: China Water Power Press, 2009: 51-60. (in Chinese))
    [9] 韩 磊, 彭 旭, 魏 巍, 等. 砾石含量对成都黏土力学特性的影响[J]. 四川建材, 2013, 39(1): 109-111. (HAN Lei, PENG Xu, WEI Wei, et al. Influence of content of gravels on the mechanical properties of Chengdu clays[J]. Sichuan Building Materials, 2013, 39(1): 109-111. (in Chinese))
    [10] Itasca Consulting Group. Fast Lagrangian analysis ofcontinua in 3 dimensions[M]. MN: Itasca Consulting Group, Minneapolis, 2002.
    [11] 屈智炯, 刘恩龙. 土的塑性力学[M]. 北京: 科学出版社, 2011. (QU Zhi-jiong, LIU En-long. The plastic mechanics of soil[M]. Beijing: China: Science Press, 2011. (in Chinese))
    [12] 钱家欢, 殷宗泽. 土工原理与计算[M]. 北京: 中国水利水电出版社, 1996. (QIAN Jia-huan, YIN Zong-ze. The principle and calculation of soil[M]. Beijing: China Water Power Press, 2009: 51-60. (in Chinese))
    [13] 沈珠江. 三种硬化理论的比较[J]. 岩土力学, 1994(2): 13-19. (SHEN Zhu-jiang. Comparison among three kinds of hardening theories[J]. Rock and Soil Mechanics, 1994(2): 13-19. (in Chinese))
    [14] 魏汝龙. 正常压密粘土的本构定律[J]. 岩土工程学报, 1981(3): 10-18. (WEI Ru-long. Constitutive laws for normally consolidated clay[J]. Chinese Journal of Geotechnical Engineering, 1981(3): 10-18. (in Chinese))
    [15] 陈育民, 徐鼎平. FLAC /FLAC 3D 基础与工程实例[M]. 北京: 中国水利水电出版社, 2013. (CHEN Yu-min, XU Ding-ping. Fundamentals of FLAC/FLAC 3D with engineering example[M]. Beijing: China Water Power Press, 2013. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-25
  • 发布日期:  2015-07-24

目录

    /

    返回文章
    返回