[1] |
WANG Qian, JI Shao-cheng, SUN Sheng-si, et al. Correlations between compressional and shear wave velocities and corresponding Poisson's ratios for some common rocks and sulfide ores[J]. Tectonophysics, 2009, 469(1): 61-72.
|
[2] |
GERCEK H. Poisson’s ratio values for rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(1): 1-13.
|
[3] |
CAO Chen, REN Ting, COOK C. Calculation of the effect of Poisson's ratio in laboratory push and pull testing of resin-encapsulated bolts[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 64: 175-180.
|
[4] |
TORVIK P J, BAGLEY R L. On the appearance of the fractional derivative in the behavior of real materials[J]. ASME J Appl Mech, 1984, 51(2): 294-298.
|
[5] |
JESUS I S, MACHADO J A T. Implementation of fractional-order electromagnetic potential through a genetic algorithm[J]. Commun Nonlinear Sci Numer Simul, 2009, 14(5): 1838-1843.
|
[6] |
SCHMIDT A, GAUL L. On the numerical evaluation of fractional derivatives in multi-degree-of-freedom systems[J]. Signal Proce, 2006, 86(10): 2592-2601.
|
[7] |
ROSSIKHIN Y A, SHITIKOVA M V. A new method for solving dynamic problems of fractional derivative viscoelasticity[J]. Inte J Eng Sci, 2001, 39(2): 149-176.
|
[8] |
PARK S W. Analytical modeling of viscoelastic dampers for structural and vibration control[J]. International Journal of Solids Structure, 2001, 38(44/45): 8065-8092.
|
[9] |
YANG D, ZHU K. Start-up flow of a viscoelastic fluid in a pipe with a fractional Maxwell’s model[J]. Computers and Mathematics with Application, 2010, 60(8): 2231-2238.
|
[10] |
WENCHANG T, WENXIAO P, MINGYU X. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates[J]. International Journal of Non-Linear Mechanics, 2003, 38(5): 645-650.
|
[11] |
周宏伟, 王春萍, 段志强, 等. 基于分数阶导数的盐岩流变本构模型[J]. 中国科学 (物理学 力学 天文学), 2012, 42(9): 310-318. (ZHOU Hong-wei, WANG Chun-ping, DUAN Zhi-qiang, et al. Time-based fractional derivative approach to creep constitutive model of salt rock[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2012, 42(9): 310-318. (in Chinese))
|
[12] |
ZHOU H W, WANG C P, HAN B B, et al. A creep constitutive model for salt rock based on fractional derivatives[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(1): 116-121.
|
[13] |
殷德顺, 和成亮, 陈 文. 岩土应变硬化指数理论及其分数阶微积分理论基础[J]. 岩土工程学报, 2010, 32(5): 762-766. (YIN De-shun, HE Cheng-liang, CHEN Wen, et al. Theory of geotechnical strain hardening index and its rationale from fractional order calculus[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 762-766. (in Chinese))
|
[14] |
殷德顺, 任俊娟, 和成亮, 等. 一种新的岩土流变模型元件[J]. 岩石力学与工程学报, 2007, 26(9): 1899-1903. (YIN De-shun, REN Jun-juan, HE Cheng-liang, et al. A new rheological model element for geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1899-1903. (in Chinese))
|
[15] |
吴 斐, 谢和平, 刘建锋, 等. 分数阶黏弹塑性蠕变模型试验研究[J]. 岩石力学与工程学报, 2014, 33(5): 964-970. (WU Fei, XIE He-ping, LIU Jian-feng, et al. Experimental study of fractional viscoelastic-plastic creep model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 964-970. (in Chinese))
|
[16] |
KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier, 2006.
|
[17] |
SMIT W, DE VRIES H. Rheological models containing fractional derivat ives[J]. Rheologica Acta, 1970, 9(4): 525-534.
|
[18] |
WONG M, PONTICIELLO M, KOVANEN V, et al. Volumetric changes of articular cartilage during stress relaxation in unconfined compression[J]. J Biomech, 2000, 33(9): 1049-1054.
|
[19] |
段晓梦, 殷德顺, 安丽媛, 等. 基于分数阶微积分的黏弹性材料变形研[J]. 中国科学 (物理学 力学 天文学), 2013, 43(8): 971-977. (DUAN Xiao-meng, YIN De-shun, AN Li-yuan, et al. The deformation study in viscoelastic materials based on fractional order calculus[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(8): 971-977. (in Chinese))
|