• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于分数阶微积分岩石的动态变形行为研究

何明明, 李宁, 陈蕴生, 朱才辉

何明明, 李宁, 陈蕴生, 朱才辉. 基于分数阶微积分岩石的动态变形行为研究[J]. 岩土工程学报, 2015, 37(zk1): 178-184. DOI: 10.11779/CJGE2015S1034
引用本文: 何明明, 李宁, 陈蕴生, 朱才辉. 基于分数阶微积分岩石的动态变形行为研究[J]. 岩土工程学报, 2015, 37(zk1): 178-184. DOI: 10.11779/CJGE2015S1034
HE Ming-ming, LI Ning, CHEN Yun-sheng, ZHU Cai-hui. Dynamic deformation behavior of rock based on fractional order calculus[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 178-184. DOI: 10.11779/CJGE2015S1034
Citation: HE Ming-ming, LI Ning, CHEN Yun-sheng, ZHU Cai-hui. Dynamic deformation behavior of rock based on fractional order calculus[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 178-184. DOI: 10.11779/CJGE2015S1034

基于分数阶微积分岩石的动态变形行为研究  English Version

基金项目: 国家自然科学基金项目(51179153); 国家自然科学基金青; 年科学基金项目(51308456)
详细信息
    作者简介:

    何明明(1986- ),男,博士研究生,主要从事岩土工程等方面的研究工作。

Dynamic deformation behavior of rock based on fractional order calculus

  • 摘要: 为了更合理地描述岩石环向与轴向动态变形之间的关系,从分数阶微积分出发,在黏弹性应力-应变组合模型理论基础上,提出环向-轴向应变分数阶黏壶及环向-轴向应变关系的黏弹性组合模型,构建了基于分数阶微积分的岩石在静动态压缩及循环荷载条件下环向-轴向应变关系模型,并给出了模型的解析解,从而得到的分数阶体积应变公式可以作为体积应变求解的新方法。基于多种岩石、混凝土及石膏的实验数据,对分数阶微积分环向-轴向应变关系模型的参数进行拟合分析,对模型参数进行了敏感性分析,揭示了围压、应变水平、分数阶导数阶数及模型参数对环向应变的影响规律。结果表明环向-轴向应变关系模型不仅可以更好地反映岩石体积变形的减缩减胀特性,而且能够描述岩石在循环荷载及动态压缩条件下变形规律。
    Abstract: In order to describe the dynamic strain of rock better, lateral-axial strain fractional dashpot and viscoelastic lateral-axial strain combined models are put forward on the basis of viscoelastic stress-strain combined model theory. The fractional lateral-axial strain relationship and the fractional volume strain model are proposed based on the fractional order calculus, and the corresponding equations under dynamic loading and cyclic loading are derived. The analytic solution for the model of lateral-axial strain relationship is given theoretically. Moreover, a multi-functional material testing set-up is employed to measure the lateral-axial strain of a variety of rock, concrete and gypsum samples under the dynamic loading and cyclic loading. The parameters of the lateral-axial strain model are determined by fitting to the experimental results of lateral-axial strain of rock. In addition, a sensitivity study for the analytic solution of the lateral-axial strain model is carried out, showing the effects of confining pressure, strain level, fractional derivative order and model coefficient on axial strain of rock samples. Furthermore, it’s found that the new model can describe the volume strain phenomenon of negative and positive dilatancy and the variation law of deformation under dynamic loading and cyclic loading in rock.
  • [1] WANG Qian, JI Shao-cheng, SUN Sheng-si, et al. Correlations between compressional and shear wave velocities and corresponding Poisson's ratios for some common rocks and sulfide ores[J]. Tectonophysics, 2009, 469(1): 61-72.
    [2] GERCEK H. Poisson’s ratio values for rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(1): 1-13.
    [3] CAO Chen, REN Ting, COOK C. Calculation of the effect of Poisson's ratio in laboratory push and pull testing of resin-encapsulated bolts[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 64: 175-180.
    [4] TORVIK P J, BAGLEY R L. On the appearance of the fractional derivative in the behavior of real materials[J]. ASME J Appl Mech, 1984, 51(2): 294-298.
    [5] JESUS I S, MACHADO J A T. Implementation of fractional-order electromagnetic potential through a genetic algorithm[J]. Commun Nonlinear Sci Numer Simul, 2009, 14(5): 1838-1843.
    [6] SCHMIDT A, GAUL L. On the numerical evaluation of fractional derivatives in multi-degree-of-freedom systems[J]. Signal Proce, 2006, 86(10): 2592-2601.
    [7] ROSSIKHIN Y A, SHITIKOVA M V. A new method for solving dynamic problems of fractional derivative viscoelasticity[J]. Inte J Eng Sci, 2001, 39(2): 149-176.
    [8] PARK S W. Analytical modeling of viscoelastic dampers for structural and vibration control[J]. International Journal of Solids Structure, 2001, 38(44/45): 8065-8092.
    [9] YANG D, ZHU K. Start-up flow of a viscoelastic fluid in a pipe with a fractional Maxwell’s model[J]. Computers and Mathematics with Application, 2010, 60(8): 2231-2238.
    [10] WENCHANG T, WENXIAO P, MINGYU X. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates[J]. International Journal of Non-Linear Mechanics, 2003, 38(5): 645-650.
    [11] 周宏伟, 王春萍, 段志强, 等. 基于分数阶导数的盐岩流变本构模型[J]. 中国科学 (物理学 力学 天文学), 2012, 42(9): 310-318. (ZHOU Hong-wei, WANG Chun-ping, DUAN Zhi-qiang, et al. Time-based fractional derivative approach to creep constitutive model of salt rock[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2012, 42(9): 310-318. (in Chinese))
    [12] ZHOU H W, WANG C P, HAN B B, et al. A creep constitutive model for salt rock based on fractional derivatives[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(1): 116-121.
    [13] 殷德顺, 和成亮, 陈 文. 岩土应变硬化指数理论及其分数阶微积分理论基础[J]. 岩土工程学报, 2010, 32(5): 762-766. (YIN De-shun, HE Cheng-liang, CHEN Wen, et al. Theory of geotechnical strain hardening index and its rationale from fractional order calculus[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 762-766. (in Chinese))
    [14] 殷德顺, 任俊娟, 和成亮, 等. 一种新的岩土流变模型元件[J]. 岩石力学与工程学报, 2007, 26(9): 1899-1903. (YIN De-shun, REN Jun-juan, HE Cheng-liang, et al. A new rheological model element for geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1899-1903. (in Chinese))
    [15] 吴 斐, 谢和平, 刘建锋, 等. 分数阶黏弹塑性蠕变模型试验研究[J]. 岩石力学与工程学报, 2014, 33(5): 964-970. (WU Fei, XIE He-ping, LIU Jian-feng, et al. Experimental study of fractional viscoelastic-plastic creep model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 964-970. (in Chinese))
    [16] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier, 2006.
    [17] SMIT W, DE VRIES H. Rheological models containing fractional derivat ives[J]. Rheologica Acta, 1970, 9(4): 525-534.
    [18] WONG M, PONTICIELLO M, KOVANEN V, et al. Volumetric changes of articular cartilage during stress relaxation in unconfined compression[J]. J Biomech, 2000, 33(9): 1049-1054.
    [19] 段晓梦, 殷德顺, 安丽媛, 等. 基于分数阶微积分的黏弹性材料变形研[J]. 中国科学 (物理学 力学 天文学), 2013, 43(8): 971-977. (DUAN Xiao-meng, YIN De-shun, AN Li-yuan, et al. The deformation study in viscoelastic materials based on fractional order calculus[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(8): 971-977. (in Chinese))
  • 期刊类型引用(10)

    1. 陆晶晶,李康. 柔性沥青路面病害成因分析及修复措施研究. 建筑机械. 2025(01): 16-21 . 百度学术
    2. 路继红,李丽胜,张沛林. 河西盐渍土地区路面拱胀特征与防治技术措施. 价值工程. 2025(16): 134-136 . 百度学术
    3. 林宇坤,宋玲,刘杰,闫晓亮,朱世煜. 荒漠区沥青路面拱胀病害机理及影响因素分析. 公路交通科技. 2024(04): 31-41 . 百度学术
    4. 张辉,王志杰. 硫酸盐侵蚀作用对ATB力学性能的影响. 安徽建筑. 2024(07): 84-87 . 百度学术
    5. 陆晶晶,刘德功. 尼日利亚某A级公路柔性沥青路面病害分析与路面结构设计. 建筑机械. 2024(11): 10-15 . 百度学术
    6. 张梦媛,丁龙亭,王选仓,谢金生,王孜健. 基于Comsol Multiphysics的半浸泡非饱和水泥基材料水分输运数值模型研究. 重庆大学学报. 2024(12): 45-56 . 百度学术
    7. 张留俊,裘友强,张发如,李雄飞,刘军勇. 降水入渗条件下氯盐渍土水盐迁移规律. 交通运输工程学报. 2023(04): 116-127 . 百度学术
    8. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 . 百度学术
    9. 吴军. 掺入玄武岩纤维的道桥沥青路面复合材料试验分析. 建筑科技. 2023(06): 108-110 . 百度学术
    10. 屈磊,许健,陈忠燕,刘永昊. 新疆盐渍土地区公路纵向开裂机制探讨. 市政技术. 2022(10): 40-44 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 17
出版历程
  • 收稿日期:  2015-03-25
  • 发布日期:  2015-07-24

目录

    /

    返回文章
    返回