[1] |
XU Y F, SUN D A. Correlation of surface fractal dimension to frictional angle at critical state[J]. Géotechnique, 2005, 55(9): 691-696.
|
[2] |
XU Y F. Fractal approach to unsaturated shear strength[J]. Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 2004, 3: 264-274
|
[3] |
XU Y F. Surface irregularity of solids in molecular domain[J]. Chaos, Solitons & Fractals, 2004, 21(2): 435-444.
|
[4] |
XU Y F, SUN D A. A fractal model for soil pores and its application to determination of water permeability[J]. Physica A, 2002, 316(1/2/3/4): 56-64
|
[5] |
XU Y F. Fractal model for compression of swelling clays[J]. Mechanics Research Communication, 2006, 2: 206-216.
|
[6] |
XU Y F. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution[J]. Computer and Geotechnics, 2004, 31(7): 549-557
|
[7] |
XU Y F. Explanation of scaling phenomenon based on fractal fragmentation[J]. Mechanics Research Communication, 2005, 32: 209-220.
|
[8] |
KING G C P, SAMMIS C G. The mechanisms of finite brittle strain[J]. Pure and Applied Geophysics, 1992, 238: 611-640.
|
[9] |
SAMMIS C, KING G, BIEGEL R, The kinematics of gouge deformation[J]. Pure and Applied Geophysics, 1987, 125: 777-812.
|
[10] |
XU Y F, XU J P, WANG J H. F. Fractal model for size effect on ice failure strength[J]. Cold Regions Science and Technology, 2004, 40: 135-144.
|
[11] |
STEACY S J, SAMMIS C G. An automation for fractal patterns of fragmentation[J]. Nature, 1991, 353: 250-251.
|
[12] |
MANDELBROT B B. The fractal geometry of nature[M]. San Francisco: WH Freeman and Company, 1982.
|
[13] |
WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18: 293-297.
|
[14] |
MCDOWELL G R, BOLTON M D, ROBERTSON D. The fractal crushing of granular materials[J]. Journal of the Mechanics and Physics of Solids, 1996, 44: 2079-2102.
|
[15] |
MO YF, TURNER KT, SZLUFARSKA I. Friction laws at the nanoscale[J]. Nature, 2009, 457: 1116-1118.
|
[16] |
XU Y F, XI Y, CHU F F. Method for shear strength of coarse granular materials based on fractal grain crushing[C]// IS-Cambridge. Cambridge, 2014.
|
[17] |
AVNIR D, JARONIEC M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 1989, 5: 1431-1433.
|
[18] |
KAHR G, KRAEHENBUEHL F, STOECKLI H F. Study of the water-bentonite system by vapour adsorption[J]. Immersion Colorimetry and X-ray Technique. Clay Minerals, 1990, 25: 499-506
|
[19] |
XU Y F, MATSUOKA H, SUN D A. Swelling characteristics of fractal-textured bentonite and its mixtures[J]. Applied Clay Science, 2003, 22(4): 197-209
|
[20] |
徐永福, 项国圣, 褚飞飞, 等. 膨润土膨胀变形的分形模型[J]. 工程地质学报, 2014, 22(5): 785-791. (XU Yong-fu, XIANG Guo-sheng, CHU Fei-fei. Fractal model for swelling deformation of bentonite[J]. Journal of Engineering Geology, 2014, 22(5): 785-791. (in Chinese))
|
[21] |
BOLT G H. Physico-chemical analysis of the compressi- bility of pure clay[J]. Géotechnique, 1956, 6(2): 86-93.
|
[22] |
LIU L, NERETNIEKS I. Homo-interaction between parallel plates at constant charge[J]. Colloids and Surfaces A: Physico chemical and Engineering Aspects, 2008, 317(1): 636-642.
|
[23] |
XU Y F, JIANG H, CHU F F, et al. Fractal model for surface erosion of cohesive sediments[J]. Fractals, 2014. doi: 10.1142/S0218348X14400064.
|