Experimental investigation of uplift behavior of anchors and estimation of uplift capacity in sands
-
摘要: 锚板基础因其具有良好的抗拔特性而广泛应用于各类岩土工程问题中。在不同密实程度砂土中采用不同几何形状的锚板进行小比尺拉拔模型试验,分析锚板型式及尺寸对上拔承载特性的影响。试验结果表明,相同直径和埋深比的螺旋锚与平板锚上拔承载特性无明显差别;相同埋深比时,直径为50 mm的锚板上拔承载力系数略小于直径为20 mm锚板的上拔承载力系数,而其上拔破坏位移比明显高于小直径锚板。进一步根据破坏位移比与埋深比关系曲线确定中密及密砂中浅、深破坏模式的临界埋深比,同时结合已有试验结果假设两种破坏模式的滑裂面,利用极限平衡分析推导并给出两种破坏模式下上拔承载力公式;通过与41个拉拔试验数据进行比较,验证了所提理论公式的适用性及准确性。Abstract: Anchor plates have been widely used in geotechnical engineering due to their good uplift resistance. Small-scale pullout model tests on anchors with various geometries in dry sands are carried out to investigate the influences of type and dimension of anchors on the uplift behavior. The experimental results show that there is no distinct difference of uplift capacity between helical anchor and circular plate anchor with the same diameter and embedment depth. The breakout factors of anchors with a diameter of 50 mm are slightly lower than those with a diameter of 20 mm, and their dimensionless failure displacements are obviously higher than those of anchors with a smaller diameter. The critical embedment ratios of anchors in medium and dense sand are determined based on the relationships of dimensionless failure displacement and embedment ratio, which is used to postulate failure surfaces of shallow and deep modes considering previous experimental results. Accordingly, theoretical formulas for uplift capacity are deduced by means of limit equilibrium analysis. The comparisons between theoretical values and experimental results demonstrate the accuracy of theoretical formulae.
-
[1] MEYERHOF G G, ADAMS J I. The ultimate uplift capacity of foundations[J]. Canadian Geotechnical Journal, 1968, 5(4): 225-244. [2] MATSUO M. Study on the uplift resistance of footing (I) [J]. Soils and Foundations, 1968, 7(4): 1-37. [3] SAEEDY H S. Stability of circular vertical anchors[J]. Canadian Geotechnical Journal, 1987, 24(3): 452-456. [4] MURRY E J, GEDDES J D. Uplift of anchor plates in sand[J]. Journal of Geotechnical Engineering, 1987, 113(3): 202-215. [5] GHALY A, HANNA A, HANNA M. Uplift behaviour of screw anchors in sand. І: dry sand[J]. Journal of Geotehcnical Engineering, 1991, 117(5): 773-793. [6] GHALY A, HANNA A. Ultimate pullout resistance of single vertical anchors[J]. Canadian Geotechnical Journal, 1994, 31(5): 661-672. [7] ILAMPARUTHI K, DICKIN E A, MUTHUKRISNAIAH K. Experimental investigation on the uplift capacity of circular anchors in sand[J]. Canadian Geotechnical Journal, 2002, 39(5): 648-664. [8] DICKIN E A. Uplift behavior of horizontal anchor plates in sand[J]. Journal of Geotechnical Engineering, 1988, 114(11): 1300-1317. [9] ROWE R K, DAVIS E H. The behaviour of anchor plates in sand[J]. Géotechnique, 1982, 32(1): 25-41. [10] WHITE D J, CHEUK C Y, BOLTON M D. The uplift resistance of pipes and plate anchors buried in sand[J]. Géotechnique, 2008, 58(10): 771-779. [11] HANNA A, AYADAT T, SABRY M. Pullout resistance of single vertical shallow helical and plate anchors in sand [J]. Geotechnical and Geological Engineering, 2007, 25(7): 559-573. [12] 张 昕, 乐金朝, 刘明亮, 等. 砂土中锚板的抗拔机理与承载力计算模型研究[J]. 岩土工程学报, 2012, 34(9): 1734-1739. (ZHANG Xin, YUE Jin-chao, LIU Ming-liang, et al. Uplifting behavior and bearing capacity of plate anchors in sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1734-1739. (in Chinese)) [13] NAZIR R, CHUAN H S, NIROUMAND H, et al. Performance of single vertical helical anchor embedded in dry sand[J]. Measurement, 2014, 49: 42-51. [14] 郝冬雪, 陈 榕, 符胜男. 砂土中螺旋锚上拔承载特性模型试验研究[J]. 岩土工程学报, 2015, 37(1): 126-132. (HAO Dong-xue, CHEN Rong, FU Sheng-nan. Experimental study on uplift capacity of multi-helix anchors in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 126-132. (in Chinese)) [15] LIU J Y, LIU M L, ZHU Z. Sand deformation around an uplift plate anchor[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2012, 138(6): 728-737. [16] DRESCHER A, DETOURNAY E. Limit load in translational failure mechanisms for associative and non-associative materials[J]. Géotechnique, 1993, 43(3): 443-456. [17] DAVIS E H. Theories of plasticity and the failure of soil masses[M]. London: Butterworth, 1968: 341-380. [18] BOLTON M D. Strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78. -
期刊类型引用(14)
1. 汤连生,杜继杰,黄家宁,陈洋,程子华,丁威涯. 钢架-土工材料系统预加固流塑土力学机理及参数敏感性分析. 水文地质工程地质. 2025(02): 85-93 . 百度学术
2. 胡庭婷. 粉煤灰回填双层结构地基建筑极限承载力计算. 粉煤灰综合利用. 2024(06): 54-58 . 百度学术
3. 于旭光,田汉儒. 基于幂强化-理想塑性模型的深埋圆形水工衬砌隧洞弹塑性解. 特种结构. 2023(01): 29-37 . 百度学术
4. 纪加强,曹雪叶,兰永强. 基于三剪应力统一强度理论的条形地基承载力计算. 延安大学学报(自然科学版). 2023(01): 57-62 . 百度学术
5. 尚阳光,杨自友,高鹏,张煜. 非等压圆形巷道围岩塑性分析. 四川轻化工大学学报(自然科学版). 2023(06): 81-88 . 百度学术
6. 马甲宽,罗丽娟,任翔,时航,尹怡墨. 基于统一强度理论的螺纹桩承载力计算方法. 上海交通大学学报. 2022(06): 754-763 . 百度学术
7. 于旭光. 基于对数应变考虑渗流影响的软弱围岩圆形隧洞弹塑性解. 隧道建设(中英文). 2022(07): 1227-1238 . 百度学术
8. 何利超,陆旭旭,赵新铭,姜波,潘建伍. 淤泥质土堤防边坡稳定性硬壳层作用效应分析. 港工技术. 2022(05): 30-35+58 . 百度学术
9. 胡君. 基于分层总和法的建筑岩土工程勘察地基承载力分析. 城市建筑. 2022(20): 138-140 . 百度学术
10. 罗宇霖,李雪宇,刘启,文武飞. 硬壳层软土地基应力分布研究. 四川建筑. 2022(06): 157-160 . 百度学术
11. 于旭光,毕南妮,杨海林. 考虑渗流、应变软化和扩容的巷道围岩三剪应力统一强度理论解. 特种结构. 2021(02): 11-20+33 . 百度学术
12. 高江平,杨继强,孙昕. 考虑双剪中主应力影响系数的D-P系列屈服准则研究. 岩石力学与工程学报. 2021(06): 1081-1091 . 百度学术
13. 于旭光,郑宏. 考虑渗流影响的幂强化-理想塑性模型圆形隧洞围岩弹塑性新解. 长江科学院院报. 2021(07): 102-108+114 . 百度学术
14. 杨继强,孙昕,崔向东. 基于双剪统一强度理论的地基承载力计算方法研究. 岩石力学与工程学报. 2021(09): 1923-1932 . 百度学术
其他类型引用(9)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 23