• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

固化粉土小应变剪切模量与强度增长相关性研究

张涛, 刘松玉, 蔡国军

张涛, 刘松玉, 蔡国军. 固化粉土小应变剪切模量与强度增长相关性研究[J]. 岩土工程学报, 2015, 37(11): 1955-1964. DOI: 10.11779/CJGE201511003
引用本文: 张涛, 刘松玉, 蔡国军. 固化粉土小应变剪切模量与强度增长相关性研究[J]. 岩土工程学报, 2015, 37(11): 1955-1964. DOI: 10.11779/CJGE201511003
ZHANG Tao, LIU Song-yu, CAI Guo-jun. Relationship between small-strain shear modulus and growth of strength for stabilized silt[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 1955-1964. DOI: 10.11779/CJGE201511003
Citation: ZHANG Tao, LIU Song-yu, CAI Guo-jun. Relationship between small-strain shear modulus and growth of strength for stabilized silt[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 1955-1964. DOI: 10.11779/CJGE201511003

固化粉土小应变剪切模量与强度增长相关性研究  English Version

基金项目: 全国优秀博士学位论文作者专项资金项目(201353); 江苏省杰出青年基金项目(BK20140027); 教育部新世纪优秀人才支持计划项目(NCET-13-0118); 江苏省交通科学研究计划项目(2013Y04)
详细信息
    作者简介:

    张涛(1986- ),男,安徽合肥人,博士研究生,主要从事特殊地基处理和土体基本性质等方面的研究工作。E-mail: zhangtao_seu@163.com。

Relationship between small-strain shear modulus and growth of strength for stabilized silt

  • 摘要: 小应变剪切模量和无侧限抗压强度是表征固化土刚度和强度特性的两个重要参数。简要介绍了弯曲元测试技术的原理及其在试验中存在的问题,采用压电陶瓷弯曲元测试技术对水泥和木质素固化剂固化粉土试样在不同养护龄期下的小应变剪切模量进行了测试,同时对相应龄期下试样进行了常规无侧限抗压强度试验,通过引入归一化参数G28和UCS28对不同固化土的小应变剪切模量和无侧限抗压强度之间的相关关系进行分析,提出了固化土刚度与强度的相关性模型,可为地基处理中固化土的无损测试与加固效果评价提供新的方法。结果表明,水泥、木质素固化粉土的小应变剪切模量随养护龄期增加而增加,养护龄期28 d内增长显著,28 d后增长趋于平稳;相同类型固化土不论固化剂掺量多少,其小应变剪切模量随养护时间的发展在本质上是相同的;固化土归一化无侧限抗压强度表现出与小应变剪切模量相似的发展趋势;提出的固化土归一化模型可作为一种土体强度无损检测的新方法。
    Abstract: The small-strain shear modulus and unconfined compressive strength are two important parameters to characterize the stiffness and strength of stabilized soils. The fundamental and the main problems existing in the experiment of bender element technique are briefly reviewed. The small-strain shear modulus of cement and lignin stabilized silt are tested under different curing time by piezoelectric bender element technique. The conventional unconfined compressive strength test is also carried out on stabilized samples under different curing time. The relationships between the small-strain shear modulus and unconfined compressive strength of different stabilized soils are analyzed by introducing the normalized parameters G28 and UCS28. A stabilization model for the stiffness and strength of stabilized soils is proposed to provide a new method for the non-destructive testing and evaluation of stabilized soils in ground improvement. It is found that the small-strain shear modulus of the stabilized silt increases with the increase of curing time. The small-strain shear modulus of the stabilized silt increases dramatically during 28 d curing time and gets steady after 28 d. The results suggest that for a given binder, the small-strain shear modulus development with time is essentially the same regardless of the dosage. The normalized unconfined compressive strength of stabilized silt shows similar characteristics to the normalized small-strain shear modulus. The proposed normalized model for stabilized soils can be used as a new method for non-destructive prediction of soil strength.
  • [1] 龚晓南. 地基处理手册[M]. 北京: 中国建筑工业出版社, 2006. (GONG Xiao-nan. Foundation treatment manual[M]. Beijing: China Building and Architecture Press, 2006. (in Chinese))
    [2] BELL F G. Lime stabilization of clay minerals and soils[J]. Engineering Geology, 1996, 42(4): 223-237.
    [3] SARIOSSEIRI F, MUHUNTHAN B. Effect of cement treatment on geotechnical properties of some Washington State soils[J]. Engineering Geology, 2009, 4(1): 119-125.
    [4] TINGLE J S, SANTONI R L. Stabilization of clay soils with nontraditional additives[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1819(1): 72-84.
    [5] BOARDMAN D I,GLENDINNING S,ROGERS C D F. Development of stabilisation and solidification in lime-clay mixes[J]. Géotechnique, 2001, 50(6): 533-543.
    [6] CLAYTON C R I. Stiffness at small strain: research and practice[J]. Géotechnique, 2011, 61(1): 5-37.
    [7] SHIRLEY D J,HAMPTON L D. Shear-wave measurement in laboratory sediments[J]. Journal of Acoustical Society of America, 1978, 63(2): 607-613.
    [8] 周燕国. 土结构性的剪切波速表征及对动力特性的影响[D]. 杭州: 浙江大学, 2007. (ZHOU Yan-guo. Shear wave velocity-based characterization of soil structure and its effects on dynamic behavior[D]. Hangzhou: Zhejiang University, 2007. (in Chinese))
    [9] 吴宏伟, 李 青, 刘国彬. 利用弯曲元测量上海原状软黏土各向异性剪切模量的试验研究[J]. 岩土工程学报, 2013, 35(1): 150-155. (NG C C W, LI Qing, LIU Guo-bin. Measurement of small-strain inherent stiffness anisotropy of intact Shanghai soft clay using bender elements[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 150-155. (in Chinese))
    [10] ZHENG Y F, KEVIN G S. Dynamic properties of granulated rubber/sand mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344.
    [11] PUPPALA A J, KADAM R, MADHYNNAPU R S, et al. Small-strain shear moduli of chemically stabilized sulfate-bearing cohesive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 322-336.
    [12] TRUONG Q H, LEE C, KIM Y U, et al. Small strain stiffness of salt-cemented granular media under low confinement[J]. Geotechnique, 2012, 62(10): 949-953.
    [13] FLORES R D V, EMIDIO G D, IMPE W F V. Small-strain shear modulus and strength of cement-treated clay[J]. Geotechnical Testing Journal, 2010, 33(1): 62-71.
    [14] 陈云敏, 周燕国, 黄 博. 利用弯曲元测试砂土剪切模量的国际平行试验[J]. 岩土工程学报, 2006, 28(7): 874-880. (CHEN Yun-min, ZHOU Yan-guo, HUANG Bo. International parallel test on the measurement of shear modulus of sand using bender elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 874-880. (in Chinese))
    [15] 姬美秀, 陈云敏, 黄 博. 弯曲元高精度测试土样剪切波速方法[J]. 岩土工程学报, 2003, 25(6): 732-736. (JI Mei-xiu, CHEN Yun-min, HUANG Bo. Method for precisely determining shear wave velocity of soil from bender element tests[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6): 732-736. (in Chinese))
    [16] LEE J S, SANTAMARINA J C. Bender elements: performance and signal interpretation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(9): 1063-1070.
    [17] VIGGIANI G. Small strain stiffness of fine grained soils[D]. London: City University, 1992.
    [18] 高新南. 小应变条件下基坑围护结构变形分析方法及应用研究[D]. 南京: 东南大学, 2012. (GAO Xin-nan. Research on the deformation analysis of retaining structures for deep excavations at small strain and its applications[D]. Nanjing: Southeast University, 2012. (in Chinese))
    [19] KAROL R H. Chemical grounting and soil stabilization[M]. 3rd ed. New York: Marcel Decker Incorporation, 2003.
    [20] VINOD J S, INDRARATNA B, MAHAMUD M A A. Stabilisation of an erodible soil using a chemical admixture[J]. Proceedings of the ICE: Ground Improvement, 2010, 163(1): 43-51.
    [21] CEYLAN H, GOPALAKRISHNAN K, KIM S. Soil stabilization with bioenergy coproduct[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2186(1): 130-137.
    [22] SANTONI R L, TINGLE J S, NIEVES M. Accelerated strength improvement of silty sand with nontraditional additives[J]. Transportation Research Record: Journal of the Transportation Research Board, 2005, 1936(1): 34-42.
    [23] INDRARATNA B, MUTTUVEL T, KHABBAZ H. Modelling the erosion rate of chemically stabilized soil incorporating tensile force-deformation characteristics[J]. Canadian Geotechnical Journal, 2009, 46(1): 57-68.
    [24] 刘松玉, 张 涛, 蔡国军, 等. 生物能源副产品木质素加固土体研究进展[J]. 中国公路学报, 2014, 27(8): 1-10. (LIU Song-yu, ZHANG Tao, CAI Guo-jun, et al. Research progress of soil stabilization with lignin from bio-energy by-products[J]. Chinese Journal of Highway and Transport, 2014, 27(8): 1-10. (in Chinese))
    [25] 刘松玉, 蔡国军. 基于生物能源副产品木质素的土体稳定性加固剂: 中国, 201010271040.1[P]. 2010-08-31. (LIU Song-yu, CAI Guo-jun. Lignin-based bioenergy by-products to stabilize soil: China, 201010271040.1[P]. 2010-08-31. (in Chinese))
    [26] HORPIBULSUK S, MIURA N, NAGARAJ T S. Assessment of strength development in cement-admixed high water content clays with Abrams’ law as a basis[J]. Géotechnique, 2003, 53(4): 439-444.
    [27] MITCHELL J K, VENG T S, MONISMITH. Behavior of stabilized soils under repeated loading[M]. Berkeley: University of California Press, 1974.
    [28] NAGARAJ T S, MIURA N, YAMADERA A. Induced cementation of soft clay[C]// Proceedings of the International Symposium on Lowland Technology. Saga: Saga University Press, 1998: 267-278.
    [29] BECKETT C, CIANCIO D. Effect of compaction water content on the strength of cement-stabilized rammed earth materials[J]. Canadian Geotechnical Journal, 2014, 51(5): 583-590.
    [30] BLANCK G, CUISINIER O, MASROURI F. Soil treatment with organic non-traditional additives for the improvement of earthworks[J]. Acta Geotechnica, 2013, 8(1): 1-12.
    [31] ZHANG T, LIU S Y, CAI G J. Study on the strength characteristics and microcosmic mechanism of silt improved by lignin-based bio-energy coproducts[J]. Ground Improvement and Geosynthetics, ASCE, 2014, 238: 220-230.
    [32] TINGLE J S, NEWMAN J K, LARSON S L, et al. Stabilization mechanisms of nontraditional additives[J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 1989(2): 59-67.
    [33] 张 涛, 刘松玉, 蔡国军, 等. 工业副产品木质素改良路基粉土的微观机理研究[J]. 岩土力学, 2014(已录用). (ZHANG Tao, LIU Song-yu, CAI Guo-jun, et al. Research on the stabilization microcosmic mechanism of lignin based by-product treated subgrade silt[J]. Rock and Soil Mechanics, 2014(accepted). (in Chinese))
    [34] XING H F, YANG X M, YE G B. Strength characteristics and mechanisms of salt-rich soil-cement[J]. Engineering Geology, 2009, 103(1/2): 33-38.
    [35] SARIDE S, PUPPALA A J, CHIKYALA S R. Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays[J]. Applied Clay Science, 2013, 85: 39-45.
计量
  • 文章访问数:  362
  • HTML全文浏览量:  6
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-11
  • 发布日期:  2015-11-19

目录

    /

    返回文章
    返回