• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

木质素改良粉土热学与力学特性相关性试验研究

张涛, 刘松玉, 蔡国军, 李军海, 接道波

张涛, 刘松玉, 蔡国军, 李军海, 接道波. 木质素改良粉土热学与力学特性相关性试验研究[J]. 岩土工程学报, 2015, 37(10): 1876-1793. DOI: 10.11779/CJGE201510016
引用本文: 张涛, 刘松玉, 蔡国军, 李军海, 接道波. 木质素改良粉土热学与力学特性相关性试验研究[J]. 岩土工程学报, 2015, 37(10): 1876-1793. DOI: 10.11779/CJGE201510016
ZHANG Tao, LIU Song-yu, CAI Guo-jun, LI Jun-hai, JIE Dao-bo. Experimental study on relationship between thermal and mechanical properties of treated silt by lignin[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1876-1793. DOI: 10.11779/CJGE201510016
Citation: ZHANG Tao, LIU Song-yu, CAI Guo-jun, LI Jun-hai, JIE Dao-bo. Experimental study on relationship between thermal and mechanical properties of treated silt by lignin[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1876-1793. DOI: 10.11779/CJGE201510016

木质素改良粉土热学与力学特性相关性试验研究  English Version

基金项目: 国家自然科学基金项目(41330641,41202203);全国优秀博士学位论文作者专项资金项目(201353);江苏省杰出青年基金项目(BK20140027);教育部新世纪优秀人才支持计划(NCET-13-0118);中央高校基本科研业务费资助项目(2242013R30014);江苏省交通科学研究计划项目(2013Y04)
详细信息
    作者简介:

    张涛(1986– ),男,安徽合肥人,博士研究生,主要从事特殊地基处理和土体基本性质等方面的研究工作。E-mail: zhangtao_seu@163.com。

  • 中图分类号: A

Experimental study on relationship between thermal and mechanical properties of treated silt by lignin

  • 摘要: 为揭示木质素改良粉土热学与力学特性随养护龄期的演化规律,通过击实试验、热阻系数测试、无侧限抗压强度试验、回弹模量试验、压汞试验和扫描电镜分析试验,探讨改良土热阻系数、强度和刚度与木质素掺量、含水率和养护龄期的变化规律,同时定性/定量评价改良土微观结构变化,分析改良土热学特性与力学特性间的相互关系。结果表明:改良土最大干密度较素土增加,最优含水率减小,干密度对含水率变化的敏感性增加;热阻系数随掺量和养护龄期增加而增加,60 d养护龄期后热阻系数趋于相同,热阻系数与土体密实度和组成成分的热传导特性密切相关;改良土强度随掺量和龄期增长而增加,28 d龄期12%掺量改良土强度约为素土强度6倍;回弹模量的变化特征与无侧限抗压强度类似,对于改良粉土,木质素最优掺量约为12%;改良土孔隙总体积和平均孔径显著减小,木质素包裹、连结土颗粒并填充孔隙,形成更致密土体结构。
    Abstract: To illustrate the evaluation laws of thermal and mechanical properties of lignin-treated silt during curing period, a series of laboratory tests including standard proctor compaction test, thermal resistivity test, unconfined compressive strength test, modulus of resilience test, mercury intrusion porosimetry and scanning electron microscopy analysis are conducted to study the relationship among thermal resistivity, strength and stiffness and lignin content, moisture content and curing time of treated silt. Moreover, the changes of microstructure of lignin-treated silt are qualitatively or quantitatively evaluated to state the relationship between thermal and mechanical properties of treated silt. The test results show that the maximum dry density of treated silt is higher than that of natural silt, but the optimum moisture content is lower than that of natural silt. The sensitivity of the dry density to changes of moisture content increases. The thermal resistivity of treated silt increases nearly with the increase of lignin content and curing time, and after 60 days of curing all the treated soils, the thermal resistivity tends to be the same. It is closely related to the density of soils and the thermal properties of soil compositions. The strength of treated silt increases with the increase of lignin content and curing time and are 6.0 times higher than natural silt for 12% lignin treated after 28 days of curing. The variation of modulus of resilience for treated silt is similar to that of the unconfined compressive strength. The optimum content of lignin for treating silt is approximately 12%. The total pore volume and average pore diameter of silt are significantly reduced, and a more stable soil structure is formed by coating, connecting particles and filling pores after treatment of lignin.
  • [1] ZHU Z D, LIU S Y. Utilization of a new soil stabilizer for silt subgrade[J]. Engineering Geology, 2008, 97(3): 192-198.
    [2] 张 涛, 蔡国军, 刘松玉. 南京地区典型土体热学特性与预测模型[J]. 东南大学学报 (自然科学版), 2014, 44(3): 655-661. (ZHANG Tao, CAI Guo-jun, LIU Song-yu. Thermal properties and prediction model of typical soils in Nanjing area[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(3): 655-661. (in Chinese))
    [3] BELL F G. Lime stabilization of clay minerals and soils[J]. Engineering Geology, 1996, 42(4): 223-237.
    [4] BOARDMAN D I, GLENDINNING S, ROGERS C D F. Development of stabilisation and solidification in lime-clay mixes[J]. Géotechnique, 2001, 51(6): 533-543.
    [5] PUPPALA A J, KADAM R, MADHYANNAPU R S, et al. Small-strain shear moduli of chemically stabilized sulfate-bearing cohesive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 322-336.
    [6] INDRARATNA B, MUTTUVEL T, KHABBAZ H, et al. Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 837-844.
    [7] CHEN R, DRNEVICH V P, DAITA R K. Short-term electrical conductivity and strength development of lime kiln dust modified soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(4): 590-594.
    [8] ROLLINGS R S, BURKES M P. Sulfate attack on cement-stabilized sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(5): 364-372.
    [9] 刘松玉, 张 涛, 蔡国军, 等. 生物能源副产品木质素加固土体研究进展[J]. 中国公路学报, 2014, 27(8): 1-10. (LIU Song-yu, ZHANG Tao, CAI Guo-jun, et al. Research progress of soil stabilization with lignin from bio-energy by-products[J]. Chinese Journal of Highway and Transport, 2014, 27(8): 1-10. (in Chinese))
    [10] SHULGA G, REKNER F, VARSLAVAN J. SW-soil and water: lignin-based interpolymer complexes as a novel adhesive for protection against erosion of sandy soil[J]. Journal of Agricultural Engineering Research, 2001, 78(3): 309-316.
    [11] VINOD J S, INDRARATNA B, MAHAMUD M A A. Stabilisation of an erodible soil using a chemical admixture[J]. Ground Improvement, 2010, 163(1): 43-51.
    [12] TINGLE J S, SANTONI R L. Stabilization of clay soils with nontraditional additives[J]. Transportation Research Record, 2003(1819): 72-84.
    [13] SANTONI R L, TINGLE J S, NIEVES M. Accelerated strength improvement of silty sand with nontraditional additives[J]. Transportation Research Record, 2005(1936): 34-42.
    [14] CEYLAN H, GOPALAKRISHNAN K, KIM S. Soil stabilization with bioenergy coproduct[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010(2186): 130-137.
    [15] PUPPALA A J, HANCHANLOET S. Evaluation of a new chemical (SA-44/LS-40) treatment method on strength and resilient properties of a cohesive soil[C]// Preprint 78th Annual Meeting of the Transportation Research Board. Washington D C, 1999.
    [16] INDRARATNA B, MUTTUVEL T, KHABBAZ H. Modelling the erosion rate of chemically stabilized soil incorporating tensile force-deformation characteristics[J]. Canadian Geotechnical Journal, 2009, 46(1): 57-68.
    [17] HOTZ R D, GE L. Investigation of the thermal conductivity of compacted silts and its correlation to the elastic modulus[J]. Journal of Materials in Civil Engineering, 2009, 22(4): 408-412.
    [18] EKWUE E I, STONE R J, BHAGWAT D. Thermal conductivity of some compacted Trinidadian soils as affected by peat content[J]. Biosystems Engineering, 2006, 94(3): 461-469.
    [19] CAI G J, ZHANG T, PUPPALA A J, LIU S Y. Thermal characterization and prediction model of typical soils in Nanjing area of China[J]. Engineering Geology, 2015, 191: 23-30.
    [20] GANGADHARA R M, SINGH D N. A generalized relationship to estimate thermal resistivity of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 767-773.
    [21] INDRARATNA B, ATHUKORALA R, VINOD J. Estimating the rate of erosion of a silty sand treated with lignosulfonate[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 139(5): 701-714.
    [22] SAWANGSURIYA A, EDIL T B, BOSSCHER P J. Modulus-suction-moisture relationship for compacted soils[J]. Canadian Geotechnical Journal, 2008, 45(7): 973-983.
    [23] WASHBURN E W. Note on a method of determining the distribution of pore sizes in a porous material[J]. Proceedings of the National Academy of Sciences of the United States of America, 1921: 115-116.
    [24] ZHANG L M, LI X. Microporosity structure of coarse granular soils[J]. Journal of Geotechnical and Geo- environmental Engineering, 2010, 136(10): 1425-1436.
    [25] 丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化土的压汞试验研究[J]. 岩土力学, 2011, 32(12): 3591-3597. (DING Jian-wen, HONG Zhen-shun, LIU Song-yu. Microstructure study of flow-solidified soil of dredged clays by mercury intrusion porosimetry[J]. Rock and Soil Mechanics, 2011, 32(12): 3591-3597. (in Chinese))
    [26] 刘兆鹏, 杜延军, 刘松玉, 等. 淋滤条件下水泥固化铅污染高岭土的强度及微观特性的研究[J]. 岩土工程学报, 2014, 36(3): 547-554. (LIU Zhao-peng, DU Yan-jun, LIU Song-yu, et al. Stength and microstructural characteristics of cement solidified lead-contaminated kaolin exposed to leaching circumstances[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 547-554. (in Chinese))
    [27] DELAGE P. A microstructure approach to the sensitivity and compressibility of some Eastern Canada sensitive clays[J]. Géotechnique, 2010, 60(5): 353-368.
    [28] LEE J K, SHANG J Q. Evolution of thermal and mechanical properties of mine tailings and fly ash mixtures during curing period[J]. Canadian Geotechnical Journal, 2014, 51(5): 570-582.
计量
  • 文章访问数:  352
  • HTML全文浏览量:  9
  • PDF下载量:  440
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-11
  • 发布日期:  2015-10-19

目录

    /

    返回文章
    返回