• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

磷酸盐对铅污染土-膨润土竖向隔离墙材料沉降特性影响的试验研究

杨玉玲, 杜延军, 任伟伟, 范日东

杨玉玲, 杜延军, 任伟伟, 范日东. 磷酸盐对铅污染土-膨润土竖向隔离墙材料沉降特性影响的试验研究[J]. 岩土工程学报, 2015, 37(10): 1856-1864. DOI: 10.11779/CJGE201510014
引用本文: 杨玉玲, 杜延军, 任伟伟, 范日东. 磷酸盐对铅污染土-膨润土竖向隔离墙材料沉降特性影响的试验研究[J]. 岩土工程学报, 2015, 37(10): 1856-1864. DOI: 10.11779/CJGE201510014
YANG Yu-ling, DU Yan-jun, REN Wei-wei, FAN Ri-dong. Experimental study on effect of phosphates on sedimentation behavior of lead-contaminated soil-bentonite slurry wall backfills[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1856-1864. DOI: 10.11779/CJGE201510014
Citation: YANG Yu-ling, DU Yan-jun, REN Wei-wei, FAN Ri-dong. Experimental study on effect of phosphates on sedimentation behavior of lead-contaminated soil-bentonite slurry wall backfills[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1856-1864. DOI: 10.11779/CJGE201510014

磷酸盐对铅污染土-膨润土竖向隔离墙材料沉降特性影响的试验研究  English Version

基金项目: 国家自然科学基金项目(51278100,41330641,41472258); 江苏省自然科学基金项目(BK2012022)
详细信息
    作者简介:

    杨玉玲(1986- ),女,广西贵港人,博士研究生,主要从事环境岩土方面的研究。E-mail: yangyuling_seu@163.com。

  • 中图分类号: A

Experimental study on effect of phosphates on sedimentation behavior of lead-contaminated soil-bentonite slurry wall backfills

  • 摘要: 土-膨润土竖向隔离墙广泛应用于控制地下水中污染物的运移。将两种磷酸盐用于铅污染环境下传统隔离墙材料改良,以增强墙体材料分散性,提高其对污染物的阻滞效果。通过一系列沉降试验和微观扫描电镜试验,研究了不同铅浓度、磷酸盐掺量和种类下土-膨润土隔离墙材料的沉降特性及其变化规律,并给出相应的机理解释。试验结果表明,隔离墙材料在铅污染作用下发生絮凝,沉积物体积增加36%;磷酸盐作用下,铅污染试样沉降模式由絮凝沉降型转变为累积沉降型,同时沉积物体积明显减小,沉积物结构更致密;磷酸盐的空间位阻效应和具有增加土粒表面负电势的性能使得隔离墙材料的分散性得到显著改善,土颗粒保持为平行有序的排列结构;相同磷酸盐掺量下,掺加六偏磷酸钠试样的沉降体积较小,其对铅污染试样的分散效果优于焦磷酸钠;铅浓度为0~0.1,1~2和6 mmol时,六偏磷酸钠最优掺量分别为0.1%,0.5%和2%。研究成果可对改善受污染隔离墙材料的分散性提供一定参考。
    Abstract: Soil-bentonite (SB) slurry walls are widely used in controlling migration of the contaminants in groundwater. Adding two types of phosphate to lead contaminated SB backfills may be advantageous to maintain the deflocculated structure of the bentonite in backfill, which is beneficial to enhance contaminant retarding ability of the backfill. A series of sedimentation and scanning electron microscope (SEM) tests are conducted to investigate changes in sedimentation behavior of SB backfills with various lead concentrations and phosphate contents/types, and the relevant mechanism is given. The results reveal that lead results in flocculation of the SB backfill and a 36% increase in the sediment volume. A certain amount of phosphate makes sedimentation curve of the contaminated backfill change from flocculation sedimentation type to accumulation sedimentation type, and the sediment volume of the backfill decreases significantly. Addition of phosphate enhances dispersity of the SB backfill due to steric stabilization of the phosphate and increased negative charge of the clay particle surfaces. The soil particles present a paralleled arrangement. Sodium hexametaphosphate has higher dispersibility compared with sodium pyrophosphate, because the backfills amended with sodium hexametaphosphate have smaller sediment volume. Optimum content of the phosphate is 0.1%, 0.5% and 2% while lead concentration in the backfill ranges in 0~0.1, 1~2, 6 mmol, respectively. The results obtained in this study may provide a meaningful guidance for improving dispersity of contaminated SB backfills.
  • [1] 范日东, 杜延军, 陈左波, 等. 受铅污染的土-膨润土竖向隔离墙材料的压缩及渗透特性试验研究[J]. 岩土工程学报, 2013, 35(5): 841-848. (FAN Ri-dong, DU Yan-jun, CHEN Zuo-bo, et al. Compressibility and permeability characteristics of lead contaminated soil-bentonite vertical cutoff wall backfills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 841-848. (in Chinese))
    [2] FAN R D, DU Y J, REDDY K R, et al. Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill: Initial assessment[J]. Applied Clay Science, 2014, 101(2): 119-127.
    [3] SHARMA H D, REDDY K R. Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies[M]. New York: John Wiley & Sons, Inc, 2004.
    [4] MALUSIS M A, MCKEEHAN M D. Chemical compatibility of model soil-bentonite backfill containing multiswellable bentonite[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 189-198.
    [5] JO H Y, KATSUMI T, BENSON C H, EDIL T B. Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(7): 557-567.
    [6] JO H Y, BENSON C H, SHACKELFORD C D, et al. Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(4): 405-417.
    [7] MALUSIS M A, BARBEN E J, EVANS J C. Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 664-672.
    [8] HONG C S, SHACKELFORD C D, MALUSIS M A. Consolidation and hydraulic conductivity of zeolite-amended soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 15-25.
    [9] 杨玉玲, 杜延军, 范日东, 等. 分散剂改良土-膨润土竖向隔离墙材料黏度试验研究[J]. 东南大学学报(自然科学版), 2014, 44(3): 650-654. (YANG Yu-ling, DU Yan-jun, FAN Ri-dong, et al. Experimental study on viscosity of soil-bentonite vertical cut-off wall backfills amended with dispersant[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(3): 650-654. (in Chinese))
    [10] LAMBE T W. The improvement of soil properties with dispersants[J]. Boston Society Civil Engineers Journal, 1954, 41(2): 184-207.
    [11] ADEBOWALE K O, UNUABONAH I E, OLU-OWOLABI B I. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay[J]. Journal of Hazardous Materials, 2006, 134(1): 130-139.
    [12] SCHACKELFORD C D. Waste-soil interactions that alter hydraulic conductivity[J]. ASTM Special Technical Publication, 1994, 1142: 111-168.
    [13] LEE J M, SHACKELFORD C D, BENSON C H, et al. Correlating index properties and hydraulic conductivity of geosynthetic clay liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1319-1329.
    [14] SRIDHARAN A, PRAKASH K. Influence of clay mineralogy and pore-medium chemistry on clay sediment formation[J]. Canadian Geotechnical Journal, 1999, 36(5): 961-966.
    [15] MA M. The dispersive effect of sodium hexametaphosphate on kaolinite in saline water[J]. Clays and Clay Minerals, 2012, 60(4): 405-410.
    [16] PIERRE A C, MA K. Sedimentation behaviour of kaolinite and montmorillonite mixed with iron additives, as a function of their zeta potential[J]. Journal of Materials Science, 1997, 32(11): 2937-2947.
    [17] SRIDHARAN A, RAO S M, MURTHY N S. Liquid limit of montmorillonite soils[J]. Geotechnical Testing Journal, 1986, 19(3): 156-164.
    [18] WANG Y H, SIU W K. Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations[J]. Canadian Geotechnical Journal, 2006, 43(6): 587-600.
    [19] WANG Y H, SIU W K. Structure characteristics and mechanical properties of kaolinite soils. II. Effects of structure on mechanical properties[J]. Canadian Geotechnical Journal, 2006, 43(6): 601-617.
    [20] OLPHEN H. An introduction to clay colloid chemistry: for clay technologists, geologists, and soil scientists[M]. 2nd ed. New York: Wiley, 1977.
    [21] NIGHTINGALE JR E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387.
    [22] SRIDHARAN A, RAO S M, MURTHY N S, et al. Compressibility behaviour of homoionized bentonites[J]. Géotechnique, 1986, 36(4): 551-564.
    [23] SRIDHARAN A, RAO S M, MURTHY N S, et al. Compressibility behaviour of homoionized bentonites[J]. Géotechnique, 1987, 37(4): 533-535.
    [24] LAGALY G. Principles of flow of kaolin and bentonite dispersions[J]. Applied Clay Science, 1989, 4(2): 105-123.
    [25] LAGALY G, ZIESMER S. Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions[J]. Advances in Colloid and Interface Science, 2003, 100: 105-128.
    [26] RUBY M V, DAVIS A, NICHOLSON A. In situ formation of lead phosphates in soils as a method to immobilize lead[J]. Environmental Science & Technology, 1994, 28(4): 646-654.
计量
  • 文章访问数:  324
  • HTML全文浏览量:  2
  • PDF下载量:  439
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-23
  • 发布日期:  2015-10-19

目录

    /

    返回文章
    返回