• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

季节性寒区隧道围岩融化分析的一种解析计算方法

冯强, 王刚, 蒋斌松

冯强, 王刚, 蒋斌松. 季节性寒区隧道围岩融化分析的一种解析计算方法[J]. 岩土工程学报, 2015, 37(10): 1835-1843. DOI: 10.11779/CJGE201510012
引用本文: 冯强, 王刚, 蒋斌松. 季节性寒区隧道围岩融化分析的一种解析计算方法[J]. 岩土工程学报, 2015, 37(10): 1835-1843. DOI: 10.11779/CJGE201510012
FENG Qiang, WANG Gang, JIANG Bin-song. Analytical method for thawing analysis of surrounding rock in seasonal cold region tunnels[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1835-1843. DOI: 10.11779/CJGE201510012
Citation: FENG Qiang, WANG Gang, JIANG Bin-song. Analytical method for thawing analysis of surrounding rock in seasonal cold region tunnels[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1835-1843. DOI: 10.11779/CJGE201510012

季节性寒区隧道围岩融化分析的一种解析计算方法  English Version

基金项目: 国家自然科学基金项目(51508314,51279097,51379117); 国家重点基础研究发展计划(“973”)项目(2014CB046300); 山东科; 技大学科研创新团队(2012KYTD104); 山东科技大学人才引进科研启动基金项目(2015RCJJ061)
详细信息
    作者简介:

    冯强(1985- ),男,山东乳山人,讲师,博士,主要从事岩石力学理论与工程研究。E-mail: fqcumt@163.com。

  • 中图分类号: A

Analytical method for thawing analysis of surrounding rock in seasonal cold region tunnels

  • 摘要: 融化与冻胀是影响寒区隧道围岩稳定的重要因素,为分析季节性寒区隧道融化时围岩应力分布规律,建立了一种理论分析模型。该模型是在围岩先发生冻胀的基础上进行的,考虑了冻结围岩融化时体积的缩小和融化围岩在荷载作用下的压缩过程,即当冻结围岩融化时体积缩小,融化范围外侧的围岩将向隧道方向移动,并对融化围岩进行压缩变形,当达到平衡后又有一部分冻结围岩进入融化圈范围内,使得该部分冻结围岩再次融化,外侧围岩再次移动,融化围岩再次压缩,最后再次达到平衡,如此往复,直至整个系统稳定为止。为简化分析,认为所有过程均是一次完成,且冻结围岩融化时体积的缩小量近似等于围岩冻结时体积的膨胀量;而融化围岩的压缩过程是将融化围岩和衬砌看作一复合支护结构并进行受力压缩的过程。通过算例分析可知:冻结围岩融化后,衬砌中的最大主应力有所减小,融化范围内的围岩应力减小明显,而未融化范围内(冻结状态)围岩由于几何尺寸的变化使得环向应力有所增加;同时进一步分析了冻胀线应变、地应力以及融化半径对融化过程的影响规律。该融化分析模型较好的吻合现场的实际情况,对寒区隧道围岩融化研究具有一定的参考意义,能较好地指导寒区隧道设计。
    Abstract: Thaw and frozen heave are both the important factors for the stability of surrounding rock in cold region tunnels. A theoretical model is estublished to study the stress distribution when the surrounding rocks melt in seasonal cold region tunnels. The model is based on the condition that frost heave occurs firstly in the surrounding rocks, and the deflation in volume and the compression progress of thawing surrounding rocks under load when the frozen surrounding rocks melt are considered. When the frozen surrounding rocks melt and the volume reduces, the surrounding rocks outside the thawing range move to the tunnel, the thawing surrounding rocks are compressed and deformation occurs. After the balance is reached, other frozen surrounding rocks also enter the thawing range. They will also melt and the surrounding rocks outside them also move to the tunnel. The melting surrounding rocks are compressed again and the new balance is reached at last. The phenomenon is repeated, until the entire system is stable. In order to simplify the analysis, it is assumed that all progress is completed one time and the deflation in volume when the frozen surrounding rocks melt is approximately equal to the frost heave. The lining and thawing surrounding rocks are regarded as a composite retaining structure. Its deformation is regarded as the compression process of thawing surrounding rocks. The results of the example show that when the frozen surrounding rocks thaw, the maximum principal stress in lining will reduce and the stress in thawing range will also decrease distinctly. The stress in the surrounding rocks without thaw increases due to the change of geometrical sizes. In addition, the influence law of the linear strain of frost heave, geostress and thawing radius is analyzed. The proposed model can well reflect the actual situation in the field. It may provide a certain reference for the thawing study of surrounding rocks in cold region tunnels and well guide the design of cold region tunnels.
  • [1] 康永水, 刘泉声, 赵 军, 等. 岩石冻胀变形特征及寒区隧道冻胀变形模拟[J]. 岩石力学与工程学报, 2012, 31(12): 2518–2526. (KANG Yong-shui, LIU Quan-sheng, ZHAO Jun, et al. Research on frost deformation characteristics of rock and simulation of tunnel frost deformation in cold region[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1767–1773. (in Chinese))
    [2] FENG Qiang, JIANG Bin-song, ZHANG Qiang, et al. Analytical elasto-plastic solution for stress and deformation of surrounding rock in cold region tunnels [J]. Cold Region Science and Technology, 2014(108): 59–68.
    [3] GAO G Y, CHEN Q S, ZHANG Q S, et al. Analytical elasto-plastic solution for stress and plastic zone of surrounding rock in cold region tunnels[J]. Cold Region Science and Technology, 2012(72): 50–57.
    [4] LAI Yuan-ming, WU Hui, WU Zi-wang, et al. Analytical viscoelastic solution for frost force in cold-region tunnels[J]. Cold Regions Science and Technology, 2002, 31(3): 227–234.
    [5] 王大雁, 朱元林, 马 巍, 等. 冻土超声波波速与冻土物理力学性质试验研究[J]. 岩石力学与工程学报, 2003, 22(11): 1837–1840. (WANG Da-yan, ZHU Yuan-lin, MA Wei, et al. Testing study on relationship between ultrasonic wave velocities and physic-mechanical property of frozen soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1837–1840. (in Chinese))
    [6] 王效宾. 人工冻土融沉特性及其对周围环境影响研究[D]. 南京: 南京林业大学, 2009. (WANG Xiao-bin. Study on the property and the influence to surrounding environment of artificial freezing soli’s thaw-settlement[D]. Nanjing: Nanjing Forestry University, 2009. (in Chinese))
    [7] 周国庆. 饱水砂层中结构的融沉附加力研究[J]. 冰川冻土, 1998, 20(2): 120–122. (ZHOU Guo-qing. An extra-force on a structure due to thaw settlement of saturated sand[J]. Journal of Glaciology and Geocryology, 1998, 20(2): 120–122. (in Chinese))
    [8] 宋 珲, 朱 明, 袁文忠. 季节性冻土地区路基的冻胀与融沉[J]. 路基工程, 2007(1): 26–28. (SONG Hui, ZHU Ming, YUAN Wen-zhong. Frost heaveing and thawing settlement for subgrade in seasonal cold region[J]. Subgrade Engineering, 2007(1): 26–28. (in Chinese))
    [9] NIXON J F, LADANYI B, ANDERSBAND O B, et al. Thaw Consolidation[C]// Andersland O B, Anderson M, eds. Geotechnical Engineering for Cold Regions (chapter 4). New York: McGraw Hill, 1978.
    [10] 李永波, 张鸿儒, 全克江, 等. 冻融条件下模型桩基水平动力试验研究[J]. 岩土力学, 2012, 33(2): 433–438. (LI Yong-bo, ZHANG Hong-ru, QUAN Ke-jiang, et al. Experimental study of model pile foundations under lateral dynamic load in frozen and thawed soils[J]. Rock and Soil Mechanics, 2012, 33(2): 433–438. (in Chinese))
    [11] 金 龙, 汪双杰, 陈建兵. 高含冰量冻土的融化压缩变形机理[J]. 公路交通科技, 2012, 29(12): 7–13. (JIN Long, WANG Shuang-jie, CHEN Jian-bing. Mechanism of thaw compression deformation of ice-rich frozen soil[J]. Journal of Highway and Transportation Research and Development, 2012, 29(12): 7–13. (in Chinese))
    [12] 盛智平. 融化圈深度对多年冻土隧道稳定性影响分析[J]. 铁道建筑技术, 2011(2): 35–38. (SHEN Zhi-ping. Analysis on thawing cylinder depth’s influence on the tunnel stability with several year frozen earth[J]. Railway Construction Technology, 2011(2): 35–38. (in Chinese))
    [13] 夏才初, 黄继辉, 卞跃威, 等. 融化作用下多年冻土隧道围岩的弹塑性解及其与支护的相互作用分析[J]. 岩土力学, 2013, 34(7): 1987–1994. (XIA Cai-chu, HUANG Ji-hui, BIAN Yue-wei, et al. Elastoplastic analysis of surrounding rock of permafrost tunnel with thawing effect and its interaction with support[J]. Rock and Soil Mechanics, 2013, 34(7): 1987–1994. (in Chinese))
    [14] 赖远明, 吴紫汪, 朱元林, 等. 寒区隧道冻胀力的黏弹性解析解[J]. 铁道学报, 1999, 21(6): 70–74. (LAI Yuan-ming, WU Zi-wang, ZHU Yuan-lin, et al. Analytical viscoelastic solution for frost force of cold regional tunnels[J]. Journal of the China Railway Society, 1999, 21(6): 70–74. (in Chinese))
    [15] 冯 强, 蒋斌松. 多层介质寒区公路隧道保温层厚度计算的一种解析方法[J]. 岩土工程学报, 2014, 36(10): 1879–1887. (FENG Qiang, JIANG Bin-song. Analytical method for insulation layer thickness of highway tunnels with multilayer dielectric in cold regions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1879–1887. (in Chinese))
  • 期刊类型引用(8)

    1. 王亚军,白晨帆,蒋应军,李瀚盛,范江涛,袁可佳. 挤密桩对大厚度黄土地基浸水沉降的影响. 铁道建筑. 2025(02): 126-133 . 百度学术
    2. 李琳,王家鼎,谷琪,张登飞,焦少通. 古土壤层间富水对黄土场地湿陷性的影响. 西北大学学报(自然科学版). 2024(01): 72-83 . 百度学术
    3. 黄华,刘瑞阳,刘笑笑,柳明亮. 黄土湿陷特性及其改性方法研究进展. 建筑科学与工程学报. 2024(02): 1-16 . 百度学术
    4. 雷勇. 高压喷射气体劈裂湿陷性黄土效果研究. 铁道建筑技术. 2024(06): 20-24 . 百度学术
    5. 胡锦方,潘亮,张爱军,任文渊,梁志超. 棉秆纤维EPS颗粒轻量土配合比设计. 水利水运工程学报. 2023(01): 112-119 . 百度学术
    6. 徐硕昌,刘德仁,王旭,安政山,张转军,金芯. 重塑非饱和黄土浸水入渗规律的模型试验研究. 水利水运工程学报. 2023(01): 140-148 . 百度学术
    7. 牛丽思,张爱军,王毓国,任文渊,张婉. 湿度和密度变化下伊犁黄土的压缩和湿陷特性. 水力发电学报. 2021(02): 167-176 . 百度学术
    8. 王文辉,何毅,张立峰,陈有东,唐源蔚,邱丽莎,张新秀. 基于PS-InSAR和GeoDetector的兰州主城区地表变形监测与驱动力分析. 兰州大学学报(自然科学版). 2021(03): 382-388+394 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 16
出版历程
  • 收稿日期:  2015-01-03
  • 发布日期:  2015-10-19

目录

    /

    返回文章
    返回