• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

渗透作用下多孔介质中悬浮颗粒的迁移过程研究

白冰, 张鹏远, 宋晓明, 郭志光, 陈星欣

白冰, 张鹏远, 宋晓明, 郭志光, 陈星欣. 渗透作用下多孔介质中悬浮颗粒的迁移过程研究[J]. 岩土工程学报, 2015, 37(10): 1786-1793. DOI: 10.11779/CJGE201510006
引用本文: 白冰, 张鹏远, 宋晓明, 郭志光, 陈星欣. 渗透作用下多孔介质中悬浮颗粒的迁移过程研究[J]. 岩土工程学报, 2015, 37(10): 1786-1793. DOI: 10.11779/CJGE201510006
BAI Bing, ZHANG Peng-yuan, SONG Xiao-ming, GUO Zhi-guang, CHEN Xing-xin. Transport processes of suspended particles in saturated porous media by column seepage tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1786-1793. DOI: 10.11779/CJGE201510006
Citation: BAI Bing, ZHANG Peng-yuan, SONG Xiao-ming, GUO Zhi-guang, CHEN Xing-xin. Transport processes of suspended particles in saturated porous media by column seepage tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1786-1793. DOI: 10.11779/CJGE201510006

渗透作用下多孔介质中悬浮颗粒的迁移过程研究  English Version

基金项目: 国家自然科学基金项目(51279002,51478034); 高等学校博士学科点专项科研基金博导类资助项目(20130009110021)
详细信息
    作者简介:

    白冰(1966- ),男,博士,教授,博士生导师,主要从事复杂环境条件下岩土介质力学特性的研究。E-mail: baibing66@263.net。

  • 中图分类号: A

Transport processes of suspended particles in saturated porous media by column seepage tests

  • 摘要: 对天然硅粉悬浮颗粒在饱和的石英多孔介质中的渗透迁移特性进行圆柱穿透试验,得到6种不同颗粒粒径(10,15,20,25,33,47 μm)、3种不同颗粒浓度(0.2,0.5,0.8 mg/ml)、3种不同渗透速度(0.087,0.173,0.260 cm/s)和3种不同渗透方向(即自上向下,水平,自下向上)的颗粒穿透曲线,重点研究这些因素对悬浮颗粒迁移的水动力学过程、弥散效应、沉积效应等物理机制的影响。研究表明,当渗透速度相同时,颗粒穿透过程中的浓度峰值一般随颗粒粒径的增大而减小。而随渗透速度的增大,水动力学作用对颗粒迁移的影响越来越大,此时颗粒粒径大小的影响则逐渐减小。此外,存在一个临界浓度值,当注入的悬浮颗粒浓度大于该值时,随着注入悬浮颗粒浓度的增大,出流液中的颗粒相对浓度反而有减小的趋势,这与大量的悬浮颗粒进入多孔介质造成多孔介质孔隙的堵塞有关。
    Abstract: The penetration processes of a typical silica powder in saturated porous media composed of quartz sands are studied by column seepage tests. The tests consider 6 kinds of particle sizes (i.e., 10, 15, 20, 25, 33, 47 μm), 3 particle concentrations (i.e., 0.2, 0.5, 0.8 mg/mL), 3 flow velocities (i.e., 0.087, 0.173, 0.260 cm/s), and different flow directions (i.e., downward, horizontal, upward), etc. According to the test results, the physical mechanisms of suspended particle migration such as hydrodynamics, dispersion and deposition are discussed. The studies show that for the same seepage velocity, the peak concentrations of penetration process decrease generally with the increase of particles size. On the other hand, the effect of hydrodynamic processes on particle transport is increased obviously with the increase of flow velocity while the effect of particle size is degenerated correspondingly. Besides, there exists a critical injected concentration, and beyond this value the relative concentration in the effluent begins to decrease, which is related to the logging of pores of porous media due to a large number of deposited particles.
  • [1] SEN T K, KHILAR K C. Review on subsurface colloid and colloid-associated contaminant transport in saturated porous media[J]. Advances in Colloid and Interface Science, 2006, 119(2/3): 71-96.
    [2] TANG X Y, WEISBROD N. Colloid-facilitated transport of lead in natural discrete fractures[J]. Environmental Pollution,2009, 157(8/9): 2266-2274.
    [3] WALSHE G E, PANG L P, FLURY M, et al. Effects of PH,ionic strength,dissolved organic matter,and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media[J]. Water Research, 2010, 44(4): 1255-1269.
    [4] LI Z L, ZHOU L X. Cadmium transport mediated by soil colloid and dissolved orangic matter:a field study[J]. Journal of Environmental Sciences, 2010, 22(1): 106-115.
    [5] NATARAJAN N, KUMAR G S. Spatial moment analysis of colloid facilitated radionuclide transport in a coupled fracture-matrix system[J]. International Journal of Energy and Environment, 2011, 2(3): 491-504.
    [6] SUN H, GAO B, TIAN Y, et al. Kaolinite and lead in saturated porous media: facilitated and impeded transport[J]. Journal of Environmental Engineering, 2010, 136(11): 1305-1308.
    [7] PULS R W, POWELL R M. Transport of inorganic colloids through natural aquifer material:implications for contaminant transport[J]. Environmental Science and Technology, 1992, 26(3): 614-621.
    [8] KERSTING A B, EFURD D W, FINNEGAN D L, et al. Migration of plutonium in ground water at the Nevada Test Site[J]. Nature, 1999, 397: 56-59.
    [9] MISSANA T, ALONSO U, GARCIA-GUTIERREZ M, et al. Role of bentonite colloids on europium and plutonium migration in a granite fracture[J]. Applied Geochemistry, 2008, 23(6): 1484-1497.
    [10] KARATHANASIS A D. Subsurface migration of copper and zinc mediated by soil colloids[J]. Soil Science Society of America Journal, 1999, 63(4): 830-838.
    [11] GROLIMUND D, BORKOVEC M, BARMETTLER K, et al. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study[J]. Environmental Science and Technology, 1996, 30(10): 3118-3123.
    [12] SEN T K, DAS D, KHILAR K C, et al. Bacterial transport in porous media: new aspects of the mathematical model[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 260(1/2/3): 52-62.
    [13] TUFENKJI N. Modeling microbial transport in porous media: traditional approaches and recent developments[J]. Advances in Water Resources, 2007, 30(6/7): 1455-1469.
    [14] KIM H N, WALKER S L. Escherichia coli transport in porous media: influence of cell strain, solution chemistry, and temperature[J]. Colloids and Surfaces B: Biointerfaces, 2009, 71(1): 160-167.
    [15] SCHINNER T,LETZNER A,LIEDTKE S. et al. Transport of selected bacterial pathogens in agricultural soil and quartz sand[J]. Water Research, 2010, 44(4): 1182-1192.
    [16] MCCARTHY J F, MCKAY L D. Colloid transport in the subsurface: past, present, and future challenges[J]. Vadose Zone Journal, 2004, 3(2): 326-337.
    [17] PINHEIRO I G, SCHMITZ P, HOUI D. Particle capture in porousmedia when physico-chemical effects dominate[J]. Chemical Engineering Science, 1999, 54(17): 3801-3813.
    [18] AHFIR N D, WANG H Q, BENAMAR A, et al. Transport and deposition of suspended particles in saturated porous media:hydrodynamic effect[J]. Hydrogeology Journal, 2007, 15(4): 659-668.
    [19] ROY S B, DZOMBACK D A. Chemical factors influencing colloid-facilitated transport of contaminants in porous media[J]. Environmental Science and Technology, 1997, 31(3): 656-664.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 发布日期:  2015-10-19

目录

    /

    返回文章
    返回