• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

一种模拟节点达西渗透流速的三次样条多尺度有限单元法

谢一凡, 吴吉春, 薛禹群, 谢春红

谢一凡, 吴吉春, 薛禹群, 谢春红. 一种模拟节点达西渗透流速的三次样条多尺度有限单元法[J]. 岩土工程学报, 2015, 37(9): 1727-1732. DOI: 10.11779/CJGE201509023
引用本文: 谢一凡, 吴吉春, 薛禹群, 谢春红. 一种模拟节点达西渗透流速的三次样条多尺度有限单元法[J]. 岩土工程学报, 2015, 37(9): 1727-1732. DOI: 10.11779/CJGE201509023
XIE Yi-fan, WU Ji-chun, XUE Yu-qun, XIE Chun-hong. Cubic-spline multiscale finite element method for simulation of nodal Darcy velocities in aquifers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1727-1732. DOI: 10.11779/CJGE201509023
Citation: XIE Yi-fan, WU Ji-chun, XUE Yu-qun, XIE Chun-hong. Cubic-spline multiscale finite element method for simulation of nodal Darcy velocities in aquifers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1727-1732. DOI: 10.11779/CJGE201509023

一种模拟节点达西渗透流速的三次样条多尺度有限单元法  English Version

基金项目: 国家杰出青年科学基金项目(40725010); 国家自然科学基金项目(41030746)
详细信息
    作者简介:

    谢一凡(1987- ),男,博士研究生,主要从事水文数值模拟研究。E-mail: xieyifan871003 @gmail.com。

Cubic-spline multiscale finite element method for simulation of nodal Darcy velocities in aquifers

  • 摘要: 提出了一种三次样条多尺度有限单元法 (MSFEM-C) 模拟非均质介质中的地下水流运动。该方法将三次样条法和多尺度有限单元法(MSFEM)有机结合,能够高效、精确地求解水头和达西渗透流速。MSFEM-C应用三次样条函数逼近多尺度基函数,保证了基函数的一阶导数的连续性,从而得到连续的水头一阶导数。因此,MSFEM-C通过达西定律得到的渗透流速在节点上是连续的。MSFEM-C是基于MSFEM的,它可以在局部网格单元上求解达西渗透流速,而无需在整个研究区上求解,从而可以节省很大计算量。因此,MSFEM-C在求解大尺度、长时间、非线性等高计算量问题时十分高效。通过对二维稳定流以及非线性潜水流的模拟,发现MSFEM-C在计算水头和达西渗透流速时的具有很高的效率和精度。
    Abstract: A cubic-spline multiscale finite element method (MSFEM-C) is proposed for the simulation of nodal Darcy velocities in the heterogeneous media. The main goal of this method is to efficiently solve the hydraulic heads and nodal Darcy velocities. It is realized by the combination of cubic-spline technique and the multiscale finite element method (MSFEM). MSFEM-C applies cubic-spline technique to multiscale base functions so as to make their derivatives continuous. Therefore, the continuous derivatives of hydraulic head can be obtained, which ensures the continuity of the velocity field. The MSFEM-C is based on MSFEM, so that the computation of nodal Darcy velocities is decomposed from element to element. Therefore, MSFEM-C can save much computational cost, which makes it more efficinent in solving high computational problems, such as large-scale, long-term or nonlinear problems. The numerical experiments indicate that the MSFEM-C achieves accurate nodal Darcy velocities and hydraulic heads with much less computational cost.
  • [1] ZHOU Q, BENSABAT J, BEAR J. Accurate calculation of specific discharge in heterogeneous porous media[J]. Water Resources Research, 2001, 37(12): 3057-3069。
    [2] 王铁行, 罗 扬, 张 辉. 黄土节理二维稳态流流量方程[J]. 岩土工程学报, 2013, 35(6): 1115-1120. (WANG Tie-hang, LUO Yang, ZHANG Hui. Two-dimensional steady flow rate equation for loess joints[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1115-1120. (in Chinese))
    [3] SRINIVAS C, RAMASWAMY B, WHEELER M F. Mixed finite element methods for flow through unsaturated porous media[M]// RUSSELL T F, EWING R E, BREBBIA C A, et al, ed. Computational Methods in Water Resources, IX, vol. 1: Numerical Methods in Water Resources. Southampton: Elsevier Applied Science, 1992: 239-246.
    [4] D'ANGELO C, SCOTTI A. A mixed finite element method for Darcy flow in fractured porous media with non-matching grids[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2012, 46(2): 465-489.
    [5] ERVIN V J. Approximation of axisymmetric Darcy flow using mixed finite element methods[J]. SIAM Journal on Numerical Analysis, 2013, 51(3): 1421-1442.
    [6] 谢春红, 赵文良, 张天岭, 等. 地下水不稳定渗流达西速度计算新方法[J]. 岩土工程学报, 1996, 18(1): 68-74. (XIE Chun-hong, ZHAO Wen-liang, ZHANG Tian-lin, et al. A new method for solving unsteady groundwater flow[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 68-74. (in Chinese))
    [7] YEH G T. On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow[J]. Water Resources Research, 1981, 17(5): 1529-1534.
    [8] BATU V. A finite element dual mesh method to calculate Nodal Darcy velocities in nonhomogeneous and anisotropic aquifers[J]. Water Resources Research, 1984, 20(11): 1705-1717.
    [9] ZHANG Z, XUE Y, WU J. A cubic‐spline technique to calculate Nodal Darcian velocities in aquifers[J]. Water Resources Research, 1994, 30(4): 975-981.
    [10] 薛禹群, 叶淑君, 谢春红, 等. 多尺度有限元法在地下水模拟中的应用[J]. 水利学报, 2004, 7: 7-13. (XUE Yu-qun, YE Shu-jun, XIE Chun-hong, et al. Application of multi-scale finite element method to simulation of groundwater flow[J]. Journal of Hydraulic Engineering, 2004, 7: 7-13. (in Chinese))
    [11] HOU T Y, WU X H. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics, 1997, 134(1): 169-189.
    [12] 贺新光, 任 理. 求解非均质多孔介质中非饱和水流问题的一种自适应多尺度有限元方法——Ⅰ数值格式[J]. 水利学报, 2009, 40(1): 38-45. (HE Xin-guang, REN Li. Adaptive multi-scale finite element method for unsaturated flow in heterogeneous porous media Ⅰ: numerical scheme[J]. Journal of Hydraulic Engineering, 2009, 40(1): 38-45. (in Chinese))
    [13] 贺新光, 任 理. 求解非均质多孔介质中非饱和水流问题的一种自适应多尺度有限元方法: Ⅱ数值格式[J]. 水利学报, 2009, 40(2): 138-144. (HE Xin-guang, REN Li. Adaptive multi-scale finite element method for unsaturated flow in heterogeneous porous media Ⅱ: numerical scheme[J]. Journal of Hydraulic Engineering, 2009, 40(1): 38-45. (in Chinese))
    [14] 叶淑君, 吴吉春, 薛禹群. 多尺度有限单元法求解非均质多孔介质中的三维地下水流问题[J]. 地球科学进展, 2004, 19(3): 437-442. (YE Shu-jun, WU Ji-chun, XUE Yu-qun. Application of multiscale finite element method to three dimensional groundwater flow problems in heterogeneous porous media[J]. Advance in Earth Sciences, 2004, 19(3): 437-442. (in Chinese))
    [15] 于 军, 吴吉春, 叶淑君, 等. 苏锡常地区非线性地面沉降耦合模型研究[J]. 水文地质工程地质, 2007, 34(5): 11-16. (YU Jun, WU Ji-chun, YE Shu-jun, et al. Research on nonlinear coupled modeling of land subsidence in Suzhou, Wuxi and Changzhou areas, China[J]. Hydrogeology & Engineering Geology, 2007, 34(5): 11-16. (in Chinese))
    [16] GREVILLE T N E. Theory and applications of spline functions[M]. New York: Academic Press, 1969.
    [17] KARIM S A A, ROSLI M A M, MUSTAFA M I M. Cubic spline interpolation for petroleum engineering data[J]. Applied Mathematical Sciences, 2014, 8(102): 5083-5098.
    [18] 王省富. 样条函数及其应用[M]. 西安: 西北工业大学出版社, 1989. (WANG Sheng-fu. Spline functions and its applications[M]. Xi'an: Press of Industrial University of Northwest China, 1989. (in Chinese))
    [19] 薛禹群, 谢春红. 地下水数值模拟[M]. 北京: 科学出版社, 2007: 175-178. (XUE Yu-qun, XIE Chun-hong. Numerical simulation for groundwater[M]. Beijing: Science Press, 2007: 175-178. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-20
  • 发布日期:  2015-09-17

目录

    /

    返回文章
    返回