• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水泥固化铅污染土的电阻率特性与经验公式

章定文, 曹智国, 刘松玉, 陈蕾

章定文, 曹智国, 刘松玉, 陈蕾. 水泥固化铅污染土的电阻率特性与经验公式[J]. 岩土工程学报, 2015, 37(9): 1685-1691. DOI: 10.11779/CJGE201509017
引用本文: 章定文, 曹智国, 刘松玉, 陈蕾. 水泥固化铅污染土的电阻率特性与经验公式[J]. 岩土工程学报, 2015, 37(9): 1685-1691. DOI: 10.11779/CJGE201509017
ZHANG Ding-wen, CAO Zhi-guo, LIU Song-yu, CHEN Lei. Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1685-1691. DOI: 10.11779/CJGE201509017
Citation: ZHANG Ding-wen, CAO Zhi-guo, LIU Song-yu, CHEN Lei. Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1685-1691. DOI: 10.11779/CJGE201509017

水泥固化铅污染土的电阻率特性与经验公式  English Version

基金项目: 国家自然科学基金项目(51578148,41330641,51108288); 江苏省自然科学基金项目(BK2011618); 中央高校基本科研业务费专; 项资金项目(2242014R30020)
详细信息
    作者简介:

    章定文(1978- ),男,博士,教授,博士生导师,主要从事交通岩土工程和环境岩土工程等方面的研究与教学工作。E-mail: zhangdw@seu.edu.cn。

Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils

  • 摘要: 为探讨电阻率法在水泥固化重金属污染土性能评价中的应用潜能,室内配制人工铅污染土,采用水泥固化后测试其电阻率和无侧限抗压强度,分析固化土电阻率的变化规律,建立固化铅污染土的电阻率公式,并探讨电阻率与无侧限抗压强度的相关关系。试验结果表明,固化土电阻率随铅含量增大而减小,随着水泥掺入量和养护龄期的增加而增大,随着孔隙率和饱和度的减小而增大。提出了一个能够综合反映铅含量、水泥掺入量和养护龄期等因素对固化土电阻率影响规律的表征参数(nt·)/(aw·T0.5),用该参数替换Archie电阻率公式中的孔隙率,得到了水泥固化重金属污染土的电阻率经验公式,将Archie电阻率公式扩展应用到固化重金属污染土领域。固化土电阻率与强度之间近似服从幂函数关系。电阻率法是一种有效的重金属污染土固化效果评价方法,且其具有快捷、无损等优势,可推广应用。
    Abstract: In order to explore the application potential of electrical resistivity method in the field of solidified heavy metal-contaminated soils, the artificial contaminated soils with five different lead contents are solidified using cement, and then their electrical resistivities and unconfined compressive strengths after various curing periods are tested. The relationship between the electrical resistivity and unconfined compressive strength is discussed. The test results show that the cement hydration reaction results in an increase of the electrical resistivity of solidified samples, but the electrical resistivity decreases with the increase of after-curing porosity, degree of saturation and lead content. A key parameter (nt·)/ (aw·T0.5) (e is the Euler’s number) is proposed to comprehensively reflect the effects of the lead content, cement hydration reaction and dense state of soils on the electrical resistivity of solidified soils. The Archie’s electrical resistivity formula is extended to solidified heavy metal-contaminated soils by replacing the porosity by the key parameter. There is a power function relationship between the strength and the electrical resistivity while the lead content of solidified soils is certain. The electrical resistivity method can be used as a non-destructive, economical and continuous way to evaluate the quality of solidified heavy metal-contaminated soils.
  • [1] CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/stabilization: A review[J]. Waste Management, 2009, 29(1): 390-403.
    [2] United States Environmental Protection Agency. Solidification /stabilization use at superfund sites[R]. Washington D C: Office of Solid Waste and Emergency Response, Technology Innovation Office, 2000.
    [3] 陈 蕾, 刘松玉, 杜延军, 等. 水泥固化重金属铅污染土的强度特性研究[J]. 岩土工程学报, 2010, 32(12): 1898-1903. (CHEN Lei, LIU Song-yu, DU Yan-jun, et al. Unconfined compressive strength properties of cement solidified/ stabilized lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1898-1903. (in Chinese))
    [4] JIANG N J, DU Y J, LIU S Y, et al. Experimental investigation of the compressibility behaviour of cement-solidified/ stabilized zinc-contaminated kaolin clay[J]. Géotechnique Letters, 2014, 4(2): 27-32.
    [5] 刘兆鹏, 杜延军, 蒋宁俊, 等. 基于半动态淋滤试验的水泥固化铅污染黏土溶出特性研究[J]. 岩土工程学报, 2013, 35(12): 2212-2218. (LIU Zhao-peng, DU Yan-jun, JIANG Ning-jun, et al. Leaching properties of cement-solidified lead-contaminated clay via semi-dynamic leaching tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2212-2218. (in Chinese))
    [6] AL-TABBAA A, EVANS C W, WALLACE C J. Pilot in situ auger mixing treatment of a contaminated site: Part 2. Site trial[J]. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 1998, 131(2): 89-95.
    [7] AL-TABBAA A, BOES N. Pilot in situ auger mixing treatment of a contaminated site: Part 4. Performance at five years[J]. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 2002, 155(3): 187-202.
    [8] 蔡国军, 邹海峰, 刘松玉, 等. 电阻率CPTU在某农药厂污染场地评价中的应用[J]. 工程地质学报, 2012, 20(5): 821-826. (CAI Guo-jun, ZOU Hai-feng, LIU Song-yu, et al. Application of resistivity CPTU in evaluation of contamination site for pesticide factory[J]. Journal of Engineering Geology, 2012, 20(5): 821-826. (in Chinese))
    [9] BRYSON L S, BATHE A. Determination of selected geotechnical properties of soil using electrical conductivity testing[J]. Geotechnical Test Journal, 2009, 32(3): 1-10.
    [10] RINALDI V A, CUESTAS G A. Ohmic conductivity of a compacted silty clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 824-835.
    [11] XIAO Lian-zhen, LI Zong-jin. New understanding of cement hydration mechanism through electrical resistivity measurement and microstructure investigations[J]. Journal of Materials in Civil Engineering, 2009, 21(8): 368-373.
    [12] LIU Song-yu, DU Yan-jun, HAN Li-hua. Experimental study on the electrical resistivity of soil-cement admixtures[J]. Environmental Geology, 2008, 54(6): 1227-1233.
    [13] LIU Song-yu, ZHANG Ding-wen, ZHU Zhi-duo. On the uniformity of deep mixed soil-cement columns with electrical resistivity method[J]. Geotechnical Special Publication, ASCE, 2009, 188: 140-149.
    [14] ZHANG Ding-wen, CHEN Lei, LIU Song-yu. Key parameters controlling electrical resistivity and strength of cement treated soils[J]. Journal of Central South University, 2012, 19(10): 2991-2998.
    [15] 董晓强, 白晓红, 赵永强, 等. NaOH污染下水泥土的电阻率变化研究[J]. 岩土工程学报, 2007, 29(11): 1715-1719. (DONG Xiao-qiang, BAI Xiao-hong, ZHAO Yong-qiang, et al. Study on electrical resistivity of soil-cement polluted by NaOH[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1715-1719. (in Chinese))
    [16] ZHANG Ding-wen, CAO Zhi-guo, FAN Li-bin, et al. Evaluation of the influence of salt concentration on cement stabilized clay by electrical resistivity measurement method[J]. Engineering Geology, 2014, 170: 80-88.
    [17] CHEN L, DU Y J, LIU S Y, et al. Evaluation of cement hydration properties of cement-stabilized lead-contaminated soils using electrical resistivity measurement[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2011, 15(4): 312-320.
    [18] CAMPANELLA R G, WEEMEES I. Development and use of an electrical resistivity cone for groundwater contamination studies[J]. Canadian Geotechnical Journal, 1990, 27(5): 557-567.
    [19] PANDEY B, KINRADE S D, CATALAN L J. Effects of carbonation on the leachability and compressive strength of cement-solidified and geopolymer-solidified synthetic metal wastes[J]. Journal of Environmental Management, 2012, 101: 59-67.
    [20] KOMINE H. Evaluation of chemical grouted soil by electrical resistivity[J]. Ground Improvement, 1997, 1(2): 101-113.
    [21] BOARDMAN D J. Lime stabilization: clay-metal-lime interactions[D]. Loughborough: Loughborough University, 1999.
    [22] 廖晓勇, 崇忠义, 阎秀兰, 等. 城市工业污染场地: 中国环境修复领域的新课题[J]. 环境科学, 2011, 32(2): 784-794. (LIAO Xiao-yong, CHONG Zhong-yi, YAN Xiu-lan, et al. Urban industrial contaminated sites: a new issue in the field of environmental remediation in China[J]. Environmental Science, 2011, 32(2): 784-794. (in Chinese))
    [23] ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Petroleum Transactions of AIME, 1942, 146(1): 54-62.
    [24] KELLER G, FRISCHKNECHT F. Electrical methods in geophysical prospecting[M]. New York: Pergamon Press, 1966.
    [25] OH T, CHO G, LEE C. Effect of soil mineralogy and pore-water chemistry on the electrical resistivity of saturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(11): 0601401211-1-06014012-5.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-10
  • 发布日期:  2015-09-17

目录

    /

    返回文章
    返回