• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

桩承式路堤中土拱效应产生过程可视化分析

房营光, 侯明勋, 谷任国, 陈平

房营光, 侯明勋, 谷任国, 陈平. 桩承式路堤中土拱效应产生过程可视化分析[J]. 岩土工程学报, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016
引用本文: 房营光, 侯明勋, 谷任国, 陈平. 桩承式路堤中土拱效应产生过程可视化分析[J]. 岩土工程学报, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016
FANG Ying-guang, HOU Ming-xun, GU Ren-guo, CHEN Ping. Visual analysis of initiation of soil arching effect in piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016
Citation: FANG Ying-guang, HOU Ming-xun, GU Ren-guo, CHEN Ping. Visual analysis of initiation of soil arching effect in piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016

桩承式路堤中土拱效应产生过程可视化分析  English Version

基金项目: 国家自然科学基金青年基金项目(51208211);中央高校基本科研业务费专项资金项目(2014ZZ0011);亚热带建筑科学国家重点实验室自主研究课题(2013ZC18)
详细信息
    作者简介:

    房营光(1958– ),男,教授,博士生导师,主要从事岩土工程方面的科研与教学工作。E-mail: fangyg@scnu.edu.cn

Visual analysis of initiation of soil arching effect in piled embankments

  • 摘要: “土拱效应”在提高桩承式路堤承载能力方面发挥着重要的作用。现今关于“土拱效应”的研究主要采用现场原型试验和数值模拟及其在此基础上的理论计算。借助于传统的光弹试验技术,研制出一种直径3 mm、透明度较高的聚碳酸酯光弹颗粒,用于近似模拟桩承式路堤中的土颗粒,通过自制的加载装置和光测力学图像处理系统,实现多种条件下路基内部应力分布的可视化,重点观测模型内部力链网格的产生、分布及变化规律,试验结果表明:填土高度会对土拱的形成及形状产生极大影响,填土高度太小,斜向力链会因缺乏扩展空间无法闭合而不能形成拱结构,随填土高度增加,土拱由三角拱向半圆拱或梯形拱过渡;荷载的大小变化不会影响土拱效应的出现,但会对土拱的结构形状产生较大影响;随桩距比的增大,土拱由三角拱向半圆拱或多拱演化,当桩距比大于3∶1时,土拱效应开始减弱直至消失,路堤承载能力大幅下降。
    Abstract: “Soil arching effect” is known to improve the bearing capacity of piled embankments. The studies reported in literature on “soil arching effect” mainly focus on the numerical simulation methods, theoretical analysis and field application of prototype tests. In this study by using the traditional photoelastic testing procedures, the particulates 3 mm in diameter similar to those of polycarbonates are developed. The developed loading device and optical measurement mechanics image processing system are employed for visualization and obtaining the internal stress distribution in the embankments under various conditions. This is achieved by observing the rules of generation, distribution and changes in the internal force network of the model. The experimental results show that the height of fill significantly influences the formation and shape of soil arch. The oblique for chain is not able to close or even form the arch structure due to inadequate expansion space if the height of fill is too low. The soil arch transforms from triangular to semicircular or trapezoidal arch with the increasing height of fill. The load fluctuation has no influence on the emergence of the soil arching effect but significant influence on its structure and shape. The soil arch changes from triangular arch to semicircular arch or multiple arches with the increasing pile spacing ratio, and when the pile spacing ratio is greater than 3∶1, the soil arching effect starts to weaken and finally totally vanish. At this point, the bearing capacity of embankment substantially decreases.
  • [1] TERZAGHI K. Theoretical soil mechanics karl terzaghi[M]. New York: John Wiley & Sons, 1943: 66–75.
    [2] HEWLETT W J, RANDOLPH M F. Analysis of piled embankments[J]. Ground Engineering, 1988, 21(3): 12–18.
    [3] ZAESKE D, KEMPFERT H G. Berechnung and Wirkungsweise von unbewehr-ten und bewehrten mineralischen Tragschichten auf punktund linienf?rmigen Trag-gliedern[J]. Bauingenieur, 2002(77): 80–86.
    [4] 刘吉福. 路堤下复合地基桩、土应力比分析[J]. 岩石力学与工程学报, 2003(4): 674–677. (LIU Ji-fu. Analysis on pile-soil stress ratio for composite ground under embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2003(4): 674–677. (in Chinese))
    [5] 陈仁朋, 贾 宁, 陈云敏. 桩承式加筋路堤受力机理及沉降分析[J]. 岩石力学与工程学报, 2005(23): 4358–4367. (CHEN Ren-peng, JIA Ning, CHEN Yun-min. Mechanism and settlement analysis of pile-supported and geogrid-reinforced embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(23): 4358–4367. (in Chinese))
    [6] 蒋良潍, 黄润秋, 蒋忠信. 黏性土桩间土拱效应计算与桩间距分析[J]. 岩土力学, 2006(3): 445–450. (JIANG Liang-wei, HUANG Run-qiu, JIANG Zhong-xin. Analysis of soil arching effect between adjacent piles and their spacing in cohesive soils[J]. Rock and Soil Mechanics, 2006(3): 445–450. (in Chinese))
    [7] CUNDALL P A, STRACK O D. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47–65.
    [8] 郑俊杰, 赖汉江, 董友扣, 等. 桩承式路堤承载特性颗粒流细观模拟[J]. 华中科技大学学报(自然科学版), 2012(11): 43–47. (ZHENG Jun-jie, LAI Han-jiang, DONG You-kou, et al. Mesomechanical analysis of bearing characteristics of pile-supported embankment with particle flow code[J]. Journal Huazhong University of Science & Technology (Natural Science Edition), 2012(11): 43–47. (in Chinese))
    [9] 许朝阳, 周 健, 完绍金. 桩承式路堤承载特性的颗粒流模拟[J]. 岩土力学, 2013(增刊1): 501–507. (XU Zhao-yang, ZHOU Jian, WAN Shao-jin. Rock and soil mechanics simulation of bearing characteristics of pile-supported embankments by particle flow code[J]. Rock and Soil Mechanics, 2013(S1): 501–507. (in Chinese))
    [10] 费 康, 陈 毅, 王军军. 桩承式路堤土拱效应发挥过程研究[J]. 岩土力学, 2013(5): 1367–1374. (FEI Kang, CHEN Yi, WANG Jun-jun. Study of development of soil arching effect in piled embankment[J]. Rock and Soil Mechanics, 2013(5): 1367–1374. (in Chinese))
    [11] 芮 瑞, 黄 成, 夏元友, 等. 砂填料桩承式路堤土拱效应模型试验[J]. 岩土工程学报, 2013(11): 2082–2089. (RUI Rui, HUANG Cheng, XIA Yuan-you, et al. Sand filling piled embankmentmodel tests and soil arching effects analysis[J]. Chinese Journal of Geotechnical Engineering, 2013(11): 2082–2089. (in Chinese))
    [12] TIEN H S, PAIKOWSKY S G. The arching mechanism on the micro level utilizing photoelastic particles[C]// Fourth Iternational Conference on Analysis of Discontinuous Deformation. Glasgow, 2001.
    [13] ESKI?AR T, OTANI J, HIRONAKA J. Visualization of soil arching on reinforced embankment with rigid pile foundation using X-ray CT[J]. Geotextiles and Geomembranes, 2012, 32(1): 44–54.
    [14] JESSOP H T, HARRIS F C. Photoelasticity principles and method[M]. London: Cleaver-Hume Press, 1950.
    [15] FROCHT M M. Photoelasticity (I)[M]. New York: John Wiley & Sons, Inc, 1941.
    [16] JONG G J, VERRUIJT A. étude photo-élastique d'un empilement de disques[M]. Nancy: Groupe Fran?aise de Rhéologie, 1969.
    [17] ALLERSMA H G. Optical analysis of stress and strain in photoelastic particle assemblies[D]. Netherlands: TU-Delft, 1987.
    [18] MAJMUDAR T S, BEHRINGER R P. Contact force measurements and stress-induced anisotropy in granular materials[J]. Nature, 2005, 435(7045): 1079–1082.
    [19] HARTLEY R R. Evolving force networks in deforming granular material [D]. Durham: Duke University, 2003.
    [20] HOWELL D W. Stress distribution and fluctuations in static and quasi-static granular systems[D]. Durham: Duke University, 1999.
    [21] 杨荣伟, 程晓辉. 光弹颗粒材料的直剪试验研究[J]. 岩土力学, 2009(增刊1): 103–109. (YANG Rong-wei, CHENG Xiao-hui. Direct shear experiments of photoelastic granular materials[J]. Rock and Soil Mechanics, 2009(S1): 103–109. (in Chinese))
    [22] ZHOU J, LONG S, WANG Q, et al. Measurement of forces inside a three-dimensional pile of frictionless droplets[J]. Science, 2006, 312(5780): 1631–1633.
    [23] MAJMUDAR T S, SPERL M, LUDING S, et al. Jamming transition in granular systems[J]. Physical Review Letters, 2007, 98(5): 58001–58006.
  • 期刊类型引用(2)

    1. 张晶,杨吉红,卢正,唐楚轩,刘杰. 考虑非饱和路基性能劣化的路表振动响应研究. 岩土力学. 2023(S1): 678-686 . 百度学术
    2. 张海廷,杨林青,郭芳. 基于PIM的层状路面结构动力响应求解与分析. 重庆交通大学学报(自然科学版). 2022(05): 82-91 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  346
  • HTML全文浏览量:  8
  • PDF下载量:  513
  • 被引次数: 6
出版历程
  • 收稿日期:  2014-11-14
  • 发布日期:  2015-09-17

目录

    /

    返回文章
    返回