• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

冻结重塑黄土单轴加载过程中声波传播特性试验研究

黄星, 李东庆, 明锋, 张宇, 邴慧

黄星, 李东庆, 明锋, 张宇, 邴慧. 冻结重塑黄土单轴加载过程中声波传播特性试验研究[J]. 岩土工程学报, 2015, 37(9): 1660-1667. DOI: 10.11779/CJGE201509013
引用本文: 黄星, 李东庆, 明锋, 张宇, 邴慧. 冻结重塑黄土单轴加载过程中声波传播特性试验研究[J]. 岩土工程学报, 2015, 37(9): 1660-1667. DOI: 10.11779/CJGE201509013
HUANG Xing, LI Dong-qing, MING Feng, ZHANG Yu, BING Hui. Experimental study on acoustic wave propagation properties of frozen remolded loess during uniaxial loading process[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1660-1667. DOI: 10.11779/CJGE201509013
Citation: HUANG Xing, LI Dong-qing, MING Feng, ZHANG Yu, BING Hui. Experimental study on acoustic wave propagation properties of frozen remolded loess during uniaxial loading process[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1660-1667. DOI: 10.11779/CJGE201509013

冻结重塑黄土单轴加载过程中声波传播特性试验研究  English Version

基金项目: 国家自然科学基金项目(41271080,41371090); 中国科学院西部行动计划项目(KZCX2-XB3-19); 国家重点基础研究发展计划
详细信息
    作者简介:

    黄 星(1988- ),女,汉族,四川雅安人,博士研究生,主要从事冻土超声波参数与冻土物理力学性质试验研究。E-mail: hxcas7@163.com。

Experimental study on acoustic wave propagation properties of frozen remolded loess during uniaxial loading process

  • 摘要: 利用RSM-SY5(T)型非金属声波检测仪对冻结重塑黄土进行单轴加载条件下的超声波纵波透射试验,研究声波在冻结重塑黄土受压过程中传播的速度特征,同时利用短时傅里叶变换及小波分析研究声波在冻结重塑黄土中传播的波形、频谱等特征。结果表明:冻结重塑黄土的纵波波速受温度和外荷载的影响,波速随温度升高而降低,在加载过程中随应变的增大大致呈现先增加后减小的趋势;冻结重塑黄土的单轴抗压强度与初始纵波波速值之间满足指数关系,相关性很好;随着加载的进行频谱形状发生变化,谱面积和主频减小;加载初期尾波不发育,随着应力的增大、裂纹的产生尾波逐渐发育;声波的特征参数能在一定程度上反映冻结重塑黄土加载过程中内部裂纹的发展情况。
    Abstract: The ultrasonic P-wave tests on frozen remolded loess under uniaxial loading are conducted by using RSM-SY5(T) nonmetal ultrasonic test meter to study the velocity characters of P-wave. The characteristics of acoustic waveforms and wave frequency spectra of frozen remolded loess are investigated by using the short-time Fourier transform and wavelet transform. The experimental results indicate that the P-wave velocity is affected by the temperature and external loads, and the velocity decreases with the increase of temperature and generally increases at first and then decreases with strain during the loading process. There is an exponential relationship between the uniaxial compressive strength and the initial P-wave velocity, and the correlation between them is very good. With the increase of external loading, the shape of spectral curve will change and the spectral area and main frequency will decrease. The coda waves are not developed at the initiation of loading and gradually develop with the increase of stress and the emergence of cracks. The characteristic parameters of acoustic waves can reflect the development of internal cracks of frozen remolded loess during loading to some extent.
  • [1] 杨 平, 李 强. 冻土力学性能与声波参数相关性试验研究[J]. 岩土工程学报, 1997, 19(4): 78-82. (YANG Ping, LI Qiang. Experimental study on mechanical property and the relativity of acoustic parameter of frozen soil[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(4): 78-82. (in Chinese))
    [2] 刘向君, 刘 洪, 徐晓雷, 等. 低孔低渗砂岩加载条件下的声波传播特性实验研究[J]. 岩石力学与工程学报, 2009, 28(3): 560-567. (LIU Xiang-jun, LIU Hong, XU Xiao-lei, et al. Experimental research on acoustic wave propagation characteristic of low porosity and permeability sandstone under loading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 560-567. (in Chinese))
    [3] YU Jung-doung, BAE Myeong-ho, LEE In-mo, et al. Nongrouted ratio evaluation of rock bolts by reflection of guided ultrasonic waves[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139: 298-307.
    [4] 陈 旭, 俞 缙, 李 宏, 等. 不同岩性及含水率的岩石声波传播规律试验研究[J]. 岩土力学, 2013, 34(9): 2527-2533. (CHEN Xu, YU Jin, LI Hong, et al. Experimental study of propagation characteristics of acoustic wave in rocks with different lithologies and water contents[J]. Rock and Soil Mechanics, 2013, 34(9): 2527-2533. (in Chinese))
    [5] LECLAIRE P, COHNE-TENOUDJI F, AGUIRRE-PUENTE J. Observation of two longitudinal and two transverse waves in a frozen porous medium[J]. Acoustical Society of America, 1995, 97(4): 2052-2055.
    [6] 周凤玺, 赖远明. 饱和冻土中弹性波的传播特性[J]. 岩土力学, 2011, 32(9): 2669-2674. (ZHOU Feng-xi, LAI Yuan-ming. Propagation characteristics of elastic wave in saturated frozen soil[J]. Rock and Soil Mechanics, 2011, 32(9): 2669-2674. (in Chinese))
    [7] NAKANO Y, MARTIN A J, SMITH M. Ultrasonic velocities of the dilatational and shear waves in frozen soils[J]. Water Resources Research, 1972, 8(4): 1024-1030.
    [8] 杨 平, 李 强, 郁楚侯. 人工冻土声波参数试验研究[J]. 冰川冻土, 1997, 19(2): 149-153. (YANG Ping, LI Qiang, YU Chu-hou. A experimental study on the acoustic wave parameters of artificial frozen soil[J]. Journal of Glaciology and Geocryology, 1997, 19(2): 149-153. (in Chinese))
    [9] 盛 煜, 福田正己, 金学三, 等. 未冻水含量对含废弃轮胎碎屑冻土超声波速度的影响[J]. 岩土工程学报, 2000, 22(6): 716-719. (SHENG Yu, FUKUDA Masami, KIM Haksam, et al. Effect of unfrozen water content on the ultrasonic velocities in tire-mixed frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 716-719. (in Chinese))
    [10] 王大雁, 朱元林, 马 巍, 等. 冻土超声波波速与冻土物理力学性质试验研究[J]. 岩石力学与工程学报, 2003, 22(11): 1837-1840. (WANG Da-yan, ZHU Yuan-lin, MA Wei, et al. Testing study on relationship between ultrasonic wave velocities and physico-mechanical property of frozen soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1837-1840. (in Chinese))
    [11] GB50324—2001 冻土工程地质勘查规范[S]. 北京: 中国计划出版社, 2001. (GB50324—2001 Code for engineering geological investigation of frozen ground[S]. Beijing: China Planning Press, 2001. (in Chinese))
    [12] 郭麒麟, 孙云志. 南方短时冻土的热物理性质及抗压强度特征[J]. 人民长江, 2012, 43(9): 51-54. (GUO Qi-lin, SUN Yun-zhi. Thermal physical performance and compressive strength characteristics of short-term frozen soil in southern area of China[J]. Yangtze River, 2012, 43(9): 51-54. (in Chinese))
    [13] HUANG Xing, LI Dong-qing, MING Feng, et al. An experimental study on the relationship between acoustic parameters and mechanical properties of frozen silty clay[J]. Sciences in Cold and Arid Regions, 2013, 5(5): 569-602.
    [14] 刘世伟, 张建明. 高温冻土物理力学特性研究现状[J]. 冰川冻土, 2012, 34(1): 120-129. (LIU Shi-wei, ZHANG Jian-ming. Review on physic-mechanical properties of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 120-129. (in Chinese))
    [15] 李 晟. 小波与频谱分析[D]. 上海: 上海交通大学, 2009. (LI Sheng. Wavelet and spectrum analysis[D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese))
    [16] MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
    [17] GROSSMANN A, MORLET J. Decomposition of hardy functions into square integrable wavelets of constant shape[J]. SIAM Journal of Mathermatical Analysis, 1984, 15(4): 723-736.
    [18] DAUBECHIES I. Orthonormal bases of compactly supported wavelet[J]. Commun Pure Appl Math, 1988, 41(7): 909-996.
    [19] 陈达力. 岩石超声谱测试技术[J]. 岩石力学与工程学报, 1993, 13(1): 59-68. (CHEN Da-li. Rock ultrasonic spectrum measurement technology[J]. Chinese Journal of Rock Mechanics and Engineering, 1993, 13(1): 59-68. (in Chinese))
    [20] HERRAIZ M, ESPINOSA A F. Coda wave: a review[J]. Pure Appl Geophys, 1987, 125(4): 499-577.
计量
  • 文章访问数:  313
  • HTML全文浏览量:  3
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-16
  • 发布日期:  2015-09-17

目录

    /

    返回文章
    返回