• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和半空间中隧道衬砌对平面SV波的散射IBIEM求解

刘中宪, 琚鑫, 梁建文

刘中宪, 琚鑫, 梁建文. 饱和半空间中隧道衬砌对平面SV波的散射IBIEM求解[J]. 岩土工程学报, 2015, 37(9): 1599-1612. DOI: 10.11779/CJGE201509006
引用本文: 刘中宪, 琚鑫, 梁建文. 饱和半空间中隧道衬砌对平面SV波的散射IBIEM求解[J]. 岩土工程学报, 2015, 37(9): 1599-1612. DOI: 10.11779/CJGE201509006
LIU Zhong-xian, JU Xin, LIANG Jian-wen. IBIEM solution to scattering of plane SV waves by tunnel lining in saturated poroelastic half-space[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1599-1612. DOI: 10.11779/CJGE201509006
Citation: LIU Zhong-xian, JU Xin, LIANG Jian-wen. IBIEM solution to scattering of plane SV waves by tunnel lining in saturated poroelastic half-space[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1599-1612. DOI: 10.11779/CJGE201509006

饱和半空间中隧道衬砌对平面SV波的散射IBIEM求解  English Version

基金项目: 天津市应用基础研究与前沿研究计划项目(14JCYBJC21900); 国家自然科学基金项目(51278327); 滨海土木工程结构与安全教育部
详细信息
    作者简介:

    刘中宪(1982- ),男,河南泌阳人,博士后,副教授,研究生导师,主要从事地震工程、工程波动领域的研究和教学工作。E-mail: zhongxian1212@163.com。

IBIEM solution to scattering of plane SV waves by tunnel lining in saturated poroelastic half-space

  • 摘要: 基于Biot两相介质理论,采用一种高精度的间接边界积分方程法(IBIEM),研究了平面SV波在饱和半空间中隧道衬砌周围散射的基本规律,并给出了不同参数下地表位移幅值、衬砌动应力集中因子及表面孔隙水压分布图和相应的频谱结果。数值分析表明:饱和半空间隧道衬砌对SV波的散射特征取决于围岩介质孔隙率、入射波的频率和角度、隧道埋深等因素;隧道外壁透水状态对地表位移和隧道应力影响不大;不同角度SV波入射下,隧道应力集中部位有很大差别,且随半空间介质孔隙率增大,应力集中越发显著;衬砌外壁孔隙水压峰值可达到入射波应力幅值的4倍,且30°斜入射下幅值明显大于0°垂直入射情况;衬砌上方附近不同点位位移频谱特征差异显著,斜入射情况位移放大效应明显;随埋深增大,地表位移幅值和衬砌表面动应力谱振荡更为剧烈,但幅值会有所降低。另外,按波速比等效的单相介质模型可以近似计算SV波入射下隧道-饱和围岩的位移场和应力场。
    Abstract: Based on the Biot's theory of two-phase medium, a high-precision indirect boundary integral equation method (IBIEM) is proposed to solve the scattering of SV waves by a two-dimensional tunnel lining in saturated poroelastic half-space. The ground displacement amplitudes, dynamic stress concentration of the tunnel and pore pressure on the outer surface of the tunnel are investigated under different circumstances, and the frequency spectrum analysis is also made. Numerical analysis shows that the propagation and scattering characteristics of seismic waves depend on the porosity of the surrounding medium, frequency and angle of the incident waves, tunnel depth, etc. The drainage state of tunnel outer surface has little impact on the ground displacement amplitudes and dynamic stress concentration of the tunnel. The features of the dynamic stress concentration in the tunnel strongly depend on the incident angle and medium porosity; as the porosity increases, the dynamic stress concentration becomes more significant. The pore pressure on the outer surface of the tunnel can reach four times the peak stress amplitude of the incident waves, and that for incidence waves of 30° is significantly greater than that of the vertically incident case. The spectral characteristics at displacement of different points on ground surface may change within a small distance, and the amplification effect seems more obvious in the case of oblique incidence. With the increase of embedded depth, the spectral curves of ground displacement and dynamic stress concentration of the tunnel oscillate more rapidly, but the amplitude will decrease. In addition, according to equivalence of velocity ratio, the single-phase medium model can approximately simulate the displacement and stress fields of tunnel - saturated medium system for SV wave incidence.
  • [1] LEE V W, TRIFUNAC M D. Response of tunnels to incident SH-waves[J]. Journal of Engineering Mechanics, ASCE, 1979, 105(4): 643-659.
    [2] 梁建文, 纪晓东, LEE V W. 地下圆形隧道衬砌对沿线地震动的影响: (II)数值结果[J]. 岩土力学, 2005, 26(5): 687-692. (LIANG Jian-wen, JI Xiao-dong, LEE V W.Effects of an underground lined tunnel on ground motion (II): numerical results[J]. Rock and Soil Mechanics, 2005, 26(5): 687-692. (in Chinese))
    [3] LIU Q J, WANG R Y, Dynamic response of twin closely-spaced circular tunnels to harmonic plane waves in a full space[J]. Tunnelling and Underground Space Technology, 2012, 32(6): 212-220.
    [4] HWANG R N, LYSMER J. Response of buried structures to traveling waves[J]. Journal of Geotechnical Engineering, ASCE, 1981, 107(2): 183-200.
    [5] STAMOS A A, BESKOS D E. 3-D seismic response analysis of long lined tunnels in half-space[J]. Soil Dynamics and Earthquake Engineering, 1996, 15(2): 111-118.
    [6] 刘中宪, 梁建文, 张 贺. 弹性半空间衬砌洞室对平面P波和SV波的散射(II): 数值结果[J]. 自然灾害学报, 2010, 4: 77-88. (LIU Zhong-xian, LIANG Jian-wen, ZHANG He. Scattering of plane P and SV waves by a lined tunnel in elastic half space(Ⅱ):numerical results[J]. Journal of Natural Disasters, 2010, 4: 77-88. (in Chinese))
    [7] ESMAEILI M, VAHDANI S, NOORZAD A. Dynamic response of lined circular tunnel to plane harmonic waves[J]. Tunnelling and Underground Space Technology, 2006, 21(5): 511-519.
    [8] BOUZIDI Y, SCHMITT D R. Measurement of the speed and attenuation of the Biot slow wave using a large ultrasonic transmitter[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 2009, 114(B8): 101-106.
    [9] 陆建飞, 王建华. 饱和土中的任意形状孔洞对弹性波的散射[J]. 力学学报, 2002, 34(6): 904-913. (LU Jian-fei, WANG Jian-hua. Scattering of elastic waves by a cavity of arbitrary shape in saturated soil[J]. Acta Mechanica Sinica, 2002, 34(6): 904-913. (in Chinese))
    [10] KATTIS S E, BESKOS D E, CHENG A H D. 2D dynamic response of unlined and lined tunnels in poroelastic soil to harmonic body waves[J]. Earthquake Engineering and Structural Dynamics, 2003, 32(1): 97-110.
    [11] WANG J H, ZHOU X L, LU J F. Dynamic stress concentration around elliptic cavities in saturated poroelastic soil under harmonic plane waves[J]. International Journal of Solids and Structures, 2005, 42: 4295-4310.
    [12] 李伟华, 张 钊. 饱和土中深埋圆柱形衬砌洞室对瞬态平面波的散射[J]. 地球物理学报, 2013(1): 325-334. (LI Wei-hua, ZHANG Zhao. Scattering of transient plane waves by deep buried cylindrical lining cavity in saturated soil[J]. Chinese Journal of Geophysics, 2013(1): 325-334. (in Chinese))
    [13] 李伟华, 申齐豪, 赵成刚. 饱和土半空间中地下圆形衬砌洞室对平面SV波的散射[J]. 防灾减灾工程学报, 2009, 29(2): 172-178. (LI Wei-hua, SHEN Qi-hao, ZHAO Cheng-gang. Scattering of plane SV waves by a underground circular lined tunnel in half space saturated soil[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(2): 172-178. (in Chinese))
    [14] 姜领发, 王建华, 周香莲. 半空间饱和土中圆形衬砌对弹性压缩波的散射[J]. 岩土力学, 2008, 29(2): 315-320. (JIANG Ling-fa, WANG Jian-hua, ZHOU Xiang-lian. Scattering around a circular lining in saturated poroelastic half-space under dilatational waves[J]. Rock and Soil Mechanics, 2008, 29(2): 315-320. (in Chinese))
    [15] JIANG L F, ZHOU X L, WANG J H. Scattering of a plane wave by a lined cylindrical cavity in a poroelastic half-plane[J]. Computers and Geotechnics, 2009, 36(5): 773-786.
    [16] LEE V W, LIANG J. Free-field (elastic or poroelastic) half-space zero-stress or related boundary conditions[C]// Proceedings of 14 th World Conference on Earthquake Engineering. Beijing, 2008.
    [17] LIN C H, LEE V W, TODOROVSKA M I, et al. Zero-stress, cylindrical wave functions around a circular underground tunnel in a flat, elastic half-space: incident P-waves[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 879-894.
    [18] LIANG J, LIU Z. Diffraction of plane SV waves by a cavity in poroelastic half-space[J]. Earthq Eng Eng Vib, 2009, 8(1): 29-46.
    [19] LIN C H, LEE V W, TRIFUNAC M D. The reflection of plane waves in a poroelastic half-space fluid saturated with inviscid fluid[J]. Soil Dynamic and Earthquake Engineering, 2005, 25(3): 205-223.
    [20] WONG H L. Diffraction of P, SV, and Rayleigh waves by surface topography[M]. California: University of California, Department of Civil Engineering, 1979.
    [21] LUCO J E, DE BARROS F C P. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space[J]. Earthquake Engineering and Structural Dynamics, 1994, 23(3): 321-340.
    [22] BARDET J P. A viscoelastic model for the dynamic behavior of saturated poroelastic soils[J]. Trans ASME, 1992, 59(1): 128-135.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-15
  • 发布日期:  2015-09-17

目录

    /

    返回文章
    返回