• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土层中盾构隧道局部破坏引发连续破坏的机理研究

郑刚, 崔涛, 姜晓婷

郑刚, 崔涛, 姜晓婷. 砂土层中盾构隧道局部破坏引发连续破坏的机理研究[J]. 岩土工程学报, 2015, 37(9): 1556-1571. DOI: 10.11779/CJGE201509002
引用本文: 郑刚, 崔涛, 姜晓婷. 砂土层中盾构隧道局部破坏引发连续破坏的机理研究[J]. 岩土工程学报, 2015, 37(9): 1556-1571. DOI: 10.11779/CJGE201509002
ZHENG Gang, CUI Tao, JIANG Xiao-ting. Mechanism of progressive collapse induced by partial failure of shield tunnels in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1556-1571. DOI: 10.11779/CJGE201509002
Citation: ZHENG Gang, CUI Tao, JIANG Xiao-ting. Mechanism of progressive collapse induced by partial failure of shield tunnels in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1556-1571. DOI: 10.11779/CJGE201509002

砂土层中盾构隧道局部破坏引发连续破坏的机理研究  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目; (2010CB732106)
详细信息
    作者简介:

    郑 刚(1967- ),男,贵州人,博士,教授,博士生导师,从事土力学及岩土工程的教学与科研工作。E-mail: zhenggang1967@163.com。

Mechanism of progressive collapse induced by partial failure of shield tunnels in sandy soil

  • 摘要: 盾构隧道由混凝土管片拼接而成,接缝部位薄弱,在建设和运营过程中存在大量风险。国内外发生过多起因隧道管片局部损坏演变为隧道大范围破损甚至连续坍塌并导致地表沉陷等灾害。通过对隧道管片接头的受力分析,建立了接头的极限承载力包络图,作为管片接头的破坏准则。以隧道联络通道施工时,隧道腰部设置洞门作为隧道局部破坏的背景,利用离散元软件PFC,通过FISH语言二次开发研究了隧道腰部管片局部破坏引发的隧道连续破坏机理。研究表明,隧道腰部局部破坏引起土体进入隧道内从而引起隧道腰部外土体松动,并且松动区外围产生的土拱的拱脚支承于隧道顶部区域,这都导致隧道内力急剧增大,直至超过管片及接头的极限承载力,隧道局部破坏发生扩展。由于隧道环间螺栓的作用,破坏环过大的变形引起邻近环横向变形增大,进而引发邻近环的破坏,破坏沿纵向传递,隧道发生大范围连续破坏。最后,初步提出并对比分析了多种隧道防连续破坏措施。
    Abstract: The shield tunnel is generally composed of concrete segments, and there are many risks during both construction and operation because of weak joint parts. Both in China and other countries, the disasters that partial failure of tunnel linings causes a successive failure and even large ground surface subsidence happens in tunneling engineering are not very rare. According to the analysis of joint stresses, an ultimate bearing capacity envelope is established to address the failure criteria for the joints under different internal force conditions, and the failure criteria for both concrete segments and joints are implemented in the discrete element software PFC by using the FISH language. The progressive failure mechanism of the tunnel linings induced by partial failure is discussed. The results show that the partial failure at the springline reduces the resistance of the soil, and the soil arch formed above loose soil area falls on the top of the tunnel, both resulting in a sharp increase in the internal forces of the tunnel, which exceed the ultimate bearing capacity envelope and then induce an extension of partial failure. The failure rings with large transverse deformation cause the adjacent rings to be damaged because of the bolts between the rings. Finally, preliminary prevention measures are proposed and analyzed.
  • [1] DUSENBERRY D O, JUNEJA G. Review of existing guidelines and provisions related to progressive collapse[R]. Washington: National Institute of Building Sciences, 2002.
    [2] 方江华, 张志红, 张景钰. 人工冻结法在上海轨道交通四号线修复工程中的应用[J]. 土木工程学报, 2009, 42(8): 124-128. (FANG Jiang-hua, ZHANG Zhi-hong, ZHANG Jing-yu. Application of artificial freezing to recovering a collapsed tunnel in Shanghai metro No.4 line[J]. China Civil Engineering Journal, 2009, 42(8): 124-128. (in Chinese))
    [3] 杨 磊. 某市地铁区间隧道事故修复施工技术[C]// 地下交通工程与工程安全——第五届中国国际隧道工程研讨会文集. 上海, 2011: 48-52. (YANG Lei. The repair construction technology for a tunnel accident in a city[C]// Underground Transportation Projects and Work Safety: Proceedings of China'5th International Symposium on Tunneling. Shanghai, 2011: 48-52. (in Chinese))
    [4] 白云. 国内外重大地下工程事故与修复技术[M]. 北京:中国建筑工业出版社, 2012. (BAI Yun. Major accidents in underground engineering and repair technology at home and abroad[M]. Beijing: China Architecture and Building Press, 2012.(in Chinese))
    [5] 陆明, 秦灏, 朱祖熹. 上海轨道交通9号线盾构区间隧道抢险修复工程介绍[J]. 中国建筑防水, 2007, 27(4): 27-30. (LU Ming, QIN Hao, ZHU Zu-xi. Introduction of shield tunnel emergency repair of Shanghai rail rapid transit No.9 line[J]. China Building Waterproofing, 2007, 27(4): 27-30. (in Chinese))
    [6] 张旷成, 李继民. 杭州地铁湘湖站“08.11.15”基坑坍塌事故分析[J]. 岩土工程学报, 2010, 32(增刊1): 338-342. (ZHANG Kuang-cheng, LI Ji-min. Accident analysis for ‘08.11.15’ foundation pit collapse of Xianghu Station of Hangzhou metro[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 338-342. (in Chinese))
    [7] 肖晓春, 袁金荣, 朱雁飞. 新加坡地铁环线C824标段失事原因分析(一)——工程总体情况及事故发生过程[J]. 现代隧道技术, 2009, 46(5): 66-72. (XIAO Xiao-chun, YUAN Jin-rong, ZHU Yan-fei. Causation analysis of the collapse on Singapore MRT circle line lot C824 (Part I)——Project background and process of collapse[J]. Modern Tunneling Technology, 2009, 46(5): 66-72. (in Chinese))
    [8] 郑 刚, 程雪松, 张 雁. 基坑环梁支撑结构的连续破坏模拟及冗余度研究[J]. 岩土工程学报, 2014, 36(1): 105-117. (ZHENG Gang, CHENG Xue-song, ZHANG Yan. Simulation of progressive collapse and redundancy of ring-beam supporting structures of excavations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 105-117. (in Chinese))
    [9] 郑 刚, 程雪松, 刁 钰. 基坑垮塌的离散元模拟及冗余度分析[J]. 岩土力学, 2014, 35(2): 573-583. (ZHENG Gang, CHENG Xue-song, DIAO Yu. DEM simulation and redundancy analysis of excavation collapse[J]. Rock and Soil Mechanics, 2014, 35(2): 573-583. (in Chinese))
    [10] ZHENG G, CHENG X S, DIAO Y, et al. Concept and design methodology of redundancy in braced excavation and case histories[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2011, 42(3): 13-21.
    [11] KIM S H, TONON F. Face stability and required support pressure for TBM driven tunnels with ideal face membrane—Drained case[J]. Tunneling and Underground Space Technology, 2010, 25: 526-542.
    [12] 张成平, 张顶立, 王梦恕, 等. 城市隧道施工诱发的地面塌陷灾变机制及其控制[J]. 岩土力学, 2010, 31(增刊1): 303-309. (ZHANG Cheng-ping, ZHANG Ding-li, WANG Meng-shu, et al. Catastrophe mechanism and control technology of ground collapse induced by urban tunneling[J]. Rock and Soil Mechanics, 2010, 31(S1): 303-309. (in Chinese))
    [13] GB 50010—2010 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010. (GB 50010—2010 Code for design of concrete structures[S]. Beijing: China Architecture and Building Press, 2010. (in Chinese))
    [14] 黄钟晖. 盾构法隧道管片衬砌纵缝接头受力模型的研究[J]. 地下空间, 2003, 23(3): 296-305. (HUANG Zhong-hui. Study on loading model of joints at longitudinal seam of ling sefments in shield tunnel[J]. Underground Space, 2003, 23(3): 296-305. (in Chinese))
    [15] 张建刚, 何 川. 管片接头力学解析法:改进条带算法[J]. 铁道学报, 2013, 35(3): 102-107. (ZHANG Jian-gang, HE Chuan. Mechanical calculation method of segmental joints: improved strip method[J]. Journal of the China Railway Society, 2013, 35(3): 102-107. (in Chinese))
    [16] 董新平, 解枫赞. 一类盾构管片接头破坏历程的解析解 [J]. 岩土工程学报, 2013, 35(10): 1870-1875. (DONG Xin-ping, XIE Feng-zan. Analytical solution of segment joint model for segmented tunnel lining[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1870-1875. (in Chinese))
    [17] 张厚美, 傅德明, 过 迟. 盾构隧道管片接头荷载试验[J]. 现代隧道技术, 2002, 39(6): 28-33. (ZHANG Hou-mei, FU De-ming, GUO Chi. Study on load test of segment joint in shield driven tunnel[J]. Modern Tunneling Techonlogy, 2002, 39(6): 28-33. (in Chinese))
    [18] DING Wen-qi, PENG Yi-cheng, et al. Full-scale testing and modeling of the mechanical behavior of shield TBM tunnel joints[J]. Structural Engineering and Mechanics, 2013, 45(3): 337-354.
    [19] 周海鹰. 盾构隧道衬砌管片结构的力学性能试验及理论研究[D]. 大连: 大连理工大学, 2011. (ZHOU Hai-ying. Theoretical study and test on mechanic behavior of lining segment in shield tunnel[D]. Dalian: Dalian University of Technolgy, 2011. (in Chinese))
    [20] POTTS D M. Behaviour of lined and unlined tunnels in sand[D]. Cambridge: University of Cambridge, 1976.
    [21] MAIR R J, TAYLOR R N. Bored tunneling in the urban environment[C]// Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering, Hamburg, 1997: 2353-2385.
    [22] VERMEER P A, BEUTH L, BENZ T. A quasi-static method for large deformation problems in geomechanics[C]// The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). Goa, 2008.
    [23] CALLARI C. The application of a strong-discontinuity FEM to the analysis of strain localization induced by underground openings[C]// Proceedings of the Eighth International Symposium on Numerical Models in Geomechanics. NUMOG VIII, Balkema, Rotterdam, 2002: 163-170.
    [24] KAMATA H, MASHIMO H. Centrifuge model test of tunnel face reinforcement by bolting[J]. Tunneling and Underground Space Technology, 2003, 18: 205-212.
    [25] ZHANG Z X, HU X Y, SCOTT K D. A discrete numerical approach for modeling face stability in slurry shield tunneling in soft soils[J]. Computers and Geotechnics, 2011, 38: 94-104.
    [26] CHEN R P, TANG L J, LING D S, et al. Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method[J]. Computers and Geotechnics, 2011, 38: 187-195.
    [27] 黄宏伟, 徐 陵, 严佳梁, 等. 盾构隧道横向刚度有效率研究[J]. 岩土工程学报, 2006, 28(1): 11-18. (HUANG Hong-wei, XU ling, YAN Jia-liang, et al. Study on transverse effective rigidity ratio of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 11-18. (in Chinese))
    [28] 叶 飞, 何 川, 朱合华, 等. 考虑横向性能的盾构隧道纵向等效刚度分析[J]. 岩土工程学报, 2011, 33(12): 1870-1876. (YE Fei, HE Chuan, ZHU He-hua, et al. Longitudinal equivalent rigidity analysis of shield tunnel considering transverse characteristics[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1870-1876. (in Chinese))
    [29] 朱 伟, 黄正荣, 梁精华. 盾构衬砌管片的壳-弹簧设计模型研究[J]. 岩土工程学报, 2006, 28(8): 940-947. (ZHU Wei, HUANG Zheng-rong, LIANG Jing-hua. Studies on shell-spring design model for segment of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 940-947. (in Chinese))
    [30] ANAGNOSTOU G, KOVARI K. The face stability of slurry-shield-driven tunnels[J]. Tunneling and Underground Space Technology, 1991, 9(2): 165-174.
    [31] BRORER W. Face stability calculation for a slurry shield in heterogeneous soft soils[J]. Tunnels and Metropolises, 1998, 23: 215-218.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-03
  • 发布日期:  2015-09-17

目录

    /

    返回文章
    返回