• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

中低压缩性土地区桩承式加筋路堤现场试验研究

郑俊杰, 曹文昭, 董同新, 张军, 谢明星

郑俊杰, 曹文昭, 董同新, 张军, 谢明星. 中低压缩性土地区桩承式加筋路堤现场试验研究[J]. 岩土工程学报, 2015, 37(9): 1549-1555. DOI: 10.11779/CJGE201509001
引用本文: 郑俊杰, 曹文昭, 董同新, 张军, 谢明星. 中低压缩性土地区桩承式加筋路堤现场试验研究[J]. 岩土工程学报, 2015, 37(9): 1549-1555. DOI: 10.11779/CJGE201509001
ZHENG Jun-jie, CAO Wen-zhao, DONG Tong-xin, ZHANG Jun, XIE Ming-xing. Experimental investigation of geogrid-reinforced and pile-supported embankment on soils with medium-low compressibility[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1549-1555. DOI: 10.11779/CJGE201509001
Citation: ZHENG Jun-jie, CAO Wen-zhao, DONG Tong-xin, ZHANG Jun, XIE Ming-xing. Experimental investigation of geogrid-reinforced and pile-supported embankment on soils with medium-low compressibility[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1549-1555. DOI: 10.11779/CJGE201509001

中低压缩性土地区桩承式加筋路堤现场试验研究  English Version

基金项目: 国家自然科学基金项目(51278216); 铁四院科技研究开发计划(2010K29-1,2013K24-1); 华中科技大学研究生创新创业基金项目(HF-11-13-2013)
详细信息
    作者简介:

    郑俊杰(1967- ),男,湖北武汉人,博士,教授,博士生导师,主要从事岩土工程与隧道工程方面的教学、科研与技术咨询工作。E-mail: zhengjj@hust.edu.cn。

Experimental investigation of geogrid-reinforced and pile-supported embankment on soils with medium-low compressibility

  • 摘要: 将桩承式加筋路堤技术应用于中低压缩性土地区高速铁路桥台和涵洞之间填方路基的处理,通过逐渐改变CFG桩桩长形成刚度均匀变化的地基加固区,严格控制线路纵向差异沉降。通过现场试验对桥台、涵顶和路基中心地基沉降进行了长期观测,同时对桩承式加筋路堤桩间土沉降、孔隙水压力、格栅上下表面土压力和格栅变形进行了长期监测分析。研究结果表明:桩承式加筋路堤可有效减小中低压缩性土地基沉降,总沉降小且很快趋于稳定;桩承式加筋路堤通过土拱效应和张拉膜效应将路堤荷载向桩帽传递,格栅下桩土应力比明显高于格栅上,张拉膜效应明显,格栅上桩土应力比接近1.0,土拱效应较弱;格栅在路肩处发挥的作用强于线路中心处。
    Abstract: The geogrid-reinforced and pile-supported embankment is adopted to treat the subgrade of high-speed railways between the bridge abutment and culvert on the soils with medium-low compressibility. The subgrade with uniformly variable stiffness is formed by varying the lengths of CFG piles gradually aiming at controlling the longitudinal differential settlement strictly. The settlements of bridge abutment, culvert and subgrade center are monitored based on full scale field tests. Meanwhile, the settlement of the surrounding soils of pile, the pore water pressure, the earth pressure above/below the geogrid, and the geogrid deformation are measured. The experimental results demonstrate that the total and layered settlements of the subsoils with medium-low compressibility are reduced effectively, and the total settlements are very small and reach the stable value soon. The embankment load is transferred to pile caps by the combined action of soil arching effect and tensioned membrane effect. The pile-soil pressure ratio below the geogrid is significantly larger than that above the geogrid, which suggests that an obvious tensioned membrane effect exists. The pile-soil pressure ratio to 1.0 above the geogrid means that the soil arching effect is not obvious. Superior performance of the geogrid is observed at the road shoulders compared with that at the rails center.
  • [1] 朱华鹏. 中低压缩性地基高铁路基沉降计算研究[D]. 长沙: 中南大学, 2013. (ZHU Hua-peng. Settlement calculation research on medium & low compressible ground of high speed railway subgrade[D]. Changsha: Central South University, 2013. (in Chinese))
    [2] 孙红林, 陈尚勇. 高速铁路中等压缩性黏土沉降分析方法探讨[J]. 铁道工程学报, 2011(11): 30-35. (SUN Hong-lin, CHEN Shang-yong. Discussion of settlement analysis method for medium-compressible clay of high speed railway[J]. Journal of Railway Engineering Society, 2011(11): 30-35. (in Chinese))
    [3] 张崇磊, 蒋关鲁, 吴丽君, 等. 非饱和中等压缩性土地基沉降预测的研究[J]. 水文地质工程地质, 2012, 39(6): 50-56. (ZHANG Chong-lei, JIANG Guan-lu, WU Li-jun, et al. Investigation on unsaturated soil of medium-compression settlement prediction[J]. Hydrogeology & Engineering Geology, 2012, 39(6): 50-56. (in Chinese))
    [4] HAN J, GABR M A. A numerical study of load transfer mechanisms in geosynthetic reinforced and pile supported embankments over soft soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 44-53.
    [5] 饶为国, 赵成刚. 桩–网复合地基应力比分析与计算[J]. 土木工程学报, 2002, 35(2): 74-80. (RAO Wei-guo, ZHAO Cheng-gang. The behavior of pile-soil composite foundation[J]. China Civil Engineering Journal, 2002, 35(2): 74-80. (in Chinese))
    [6] ABUSHARAR S W, ZHENG J J, CHEN B G. A simplified method for analysis of a piled embankment reinforced with geosynthetics[J]. Geotextiles and Geomembranes, 2009, 27(1): 39-52.
    [7] HEWLETT W J, RANDOLPH M F. Analysis of piled embankments[J]. Ground Engineering, 1988, 21(3): 12-18.
    [8] LOW B K, TANG S K, CHOA V. Arching in piled embankment[J]. Journal of Geotechnical Engineering, 1993, 120(11): 1917-1938.
    [9] HUANG J, HAN J, OZTOPRAK S. Coupled mechanical and hydraulic modeling of geosynthetic-reinforced column- supported embankments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(8): 1011-1021.
    [10] ARIYARATHNE P, LIYANAPATHIRANA D S, LEO C J. Comparison of different two-dimensional idealizations for a geosynthetic-reinforced pile-supported embankment[J]. International Journal of Geomechanics, 2013, 13(6): 754-768.
    [11] LIU H L, NG C W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483-1493.
    [12] WACHMAN G S, BIOLZI L, LABUZ J F. Structural behavior of a pile-supported embankment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 26-34.
    [13] BRIANCON L, SIMON B. Performance of pile-supported embankment over soft soil: full-scale experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(4): 551-561.
    [14] 夏唐代, 王 梅, 寿 旋. 筒桩桩承式加筋路堤现场试验研究[J]. 岩石力学与工程学报, 2010, 29(9): 1929-1936. (XIA Tang-dai, WANG Mei, SHOU Xuan. Field test study of reinforced embankment supported by cast-in-situ thin-wall tubular piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1929-1936. (in Chinese))
    [15] 郑俊杰, 张 军, 马 强, 等. 路桥过渡段桩承式加筋路堤现场试验研究[J]. 岩土工程学报, 2012, 34(2): 355-362. (ZHENG Jun-jie, ZHANG Jun, MA Qiang, et al. Experimental investigation of geogrid-reinforced and pile-supported embankment at bridge approach[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 355-362. (in Chinese))
    [16] 中华人民共和国铁道部. 铁建设〔2006〕158号 客运专线铁路无碴轨道铺设条件评估技术指南[S]. 北京: 中国铁道出版社, 2006. (The Ministry of Railways of the people's Republic of China. Technical guide for the assessment of ballastless track laying of the railways of high-speed[S]. Beijing: China Railway Publishing House, 2006. (in Chinese))
  • 期刊类型引用(6)

    1. 王立业,周凤玺,牟占霖,万旭升,吴道勇. 超固结饱和盐渍黏土化学–力学耦合模型及其验证. 岩石力学与工程学报. 2024(09): 2301-2313 . 百度学术
    2. 张斯妤,闫子壮,陈云敏,李育超. 盐溶液侵蚀下砂-膨润土混合土化学固结行为研究. 地基处理. 2022(03): 181-189 . 百度学术
    3. 吴谦,毛雪松,王常明. 结合水对软土次固结特性的影响机制研究. 中国公路学报. 2021(07): 215-225 . 百度学术
    4. 胡士骏,陈盼,韦昌富,伊盼盼,王勇. NaCl溶液作用下深海沉积物基本物理力学响应. 岩土工程学报. 2021(S2): 142-145 . 本站查看
    5. Yu Zhang,Jie Liu,AnHua Xu,JianKun Liu,ZhaoHui Yang,JianHong Fang. Impact of brine on physical properties of saline soils. Sciences in Cold and Arid Regions. 2021(05): 430-439 . 必应学术
    6. 宋朝阳,赵成刚,韦昌富,马田田. 非饱和土平均粒间应力的计算及应用. 岩土力学. 2020(08): 2665-2674 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  479
  • HTML全文浏览量:  3
  • PDF下载量:  398
  • 被引次数: 14
出版历程
  • 收稿日期:  2014-12-15
  • 发布日期:  2015-09-17

目录

    /

    返回文章
    返回