• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于SFG模型的非饱和膨胀土本构模型研究

李吴刚, 杨庆, 刘文化, 杨钢

李吴刚, 杨庆, 刘文化, 杨钢. 基于SFG模型的非饱和膨胀土本构模型研究[J]. 岩土工程学报, 2015, 37(8): 1449-1453. DOI: 10.11779/CJGE201508013
引用本文: 李吴刚, 杨庆, 刘文化, 杨钢. 基于SFG模型的非饱和膨胀土本构模型研究[J]. 岩土工程学报, 2015, 37(8): 1449-1453. DOI: 10.11779/CJGE201508013
LI Wu-gang, YANG Qing, LIU Wen-hua, YANG Gang. Constitutive model for unsaturated expansive clays based on SFG model[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1449-1453. DOI: 10.11779/CJGE201508013
Citation: LI Wu-gang, YANG Qing, LIU Wen-hua, YANG Gang. Constitutive model for unsaturated expansive clays based on SFG model[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1449-1453. DOI: 10.11779/CJGE201508013

基于SFG模型的非饱和膨胀土本构模型研究  English Version

基金项目: 国家自然科学基金项目(51179023)
详细信息
    作者简介:

    李吴刚(1988- ),男,博士研究生,主要从事非饱土本构关系的研究。E-mail: lwgjn@mail.dlut.edu.cn。

  • 中图分类号: TU43

Constitutive model for unsaturated expansive clays based on SFG model

  • 摘要: Gens和Alonso提出了非饱和膨胀土本构概念模型(G-A模型),将土体膨胀分为微观层次和宏观层次,能够预测土体变形趋势。但G-A模型框架内建立的膨胀土模型参数多且难确定。在SFG模型的框架下,推导膨胀土的中性加载面(NL屈服面)方程,建立了膨胀土本构模型。该模型以总变形来反映土体微观层次变形,不再区分微观层次和宏观层次的结构变形,减少了非饱和膨胀土本构模型的参数。试验数据和数值模拟结果表明,中性加载屈服面和膨胀势曲线基本一致。通过与膨胀土的膨胀试验结果对比,本模型数值计算结果和试验结果较吻合,证实了所提模型的正确性。
    Abstract: The framework for the behaviour of unsaturated expansive clays (G-A model) proposed by Gens and Alsono can explain the mechanical behaviour of expansive clays, in which the fundamental characteristic is the explicit consideration of microstructural and macrostructural deformations. The constitutive models based on the framework of G-A model have a lot of parameters which are hard to be determined. The constitutive model in this work deduces the neutral loading lines in the framework of SFG model. The total deformations reflect micro-level deformation, therefore it is not necessary to distinguish between micro-level and macro-level structural deformations. It allows the constitutive model for unsaturated expansive clays to reduce parameters. A mathematical formulation of the model is assessed by comparison with the experimental data available in literatures. The model predictions agree with the experimental results.
  • [1] ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430.
    [2] GENS A, ALONSO E E. A framework for the behaviour of unsaturated expansive clays[J]. Canadian Geotechnical Journal, 1992, 29(6): 1013-1032.
    [3] ALONSO E E, VAUNAT J, GENS A. Modelling the mechanical behaviour of expansive clays[J]. Engineering Geology, 1999, 54(1): 173-183.
    [4] SANCHEZ M, GENS A, GUIMARAES L D, et al. A double structure generalized plasticity model for expansive materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(8): 751-787.
    [5] SHENG D C, FREDLUND D G, GENS A. A new modeling approach for unsaturated soils using independent stress variables[J]. Canadian Geotechnical Journal, 2008, 45: 511-534.
    [6] 曹雪山. 非饱和膨胀土的弹塑性本构模型研究[J]. 岩土工程学报, 2005, 27(7): 832-836. (CAO Xue-shan. Elastoplastic constitutive model of unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 832-836. (in Chinese))
    [7] 李志清, 余文龙, 付 乐, 等. 膨胀土胀缩变形规律与灾害机制研究[J]. 岩土力学, 2010, 31(增刊2): 270-275. (LI Zhi-qing, YU Wen-long, FU Le, et al. Research on expansion and contraction rules and disaster mechanism of expansive soil[J]. Rock and Soil Mechanics, 2010, 31(S2): 270-275. (in Chinese))
    [8] GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling the variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique, 2003, 53(1): 105-112.
    [9] Nuth, Mathieu, LalouI, Lyesse. Advances in modelling hysteretic water retention curve in deformable soils[J]. Computers and Geotechnics, 2008, 35(6): 835-844.
    [10] ROMERO E, DELLA VECCHIA G, JOMMI C. An insight into the water retention properties of compacted clayey soils[J]. Géotechnique, 2011, 61(4): 313-328.
    [11] ZHAN Liang-tong, CHEN Ping, NG C W W. Effect of suction change on water content and total volume of an expansive clay[J]. Journal of Zhejiang University (Science A), 2007, 8(5): 699-706.
    [12] ABDULJAUWAD S N, AL-SULAIMANI G J, BASUNBUL I A, et al. Laboratory and field studies of response of structures to heave of expansive clay[J]. Géotechnique, 1998, 48(1): 103-121.
    [13] 詹良通, 吴宏伟. 非饱和膨胀土变形和强度特性的三轴试验研究[J]. 岩土工程学报,2006, 28(2): 196-201. (ZHAN Liang-tong, NG C W W. Experimental study on mechanical behavior of recompacted unsaturated expansive clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 196-201. (in Chinese))
    [14] BUTTERFIELD R. A natural compression law for soils (an advance on e-logp′)[J]. Géotechnique, 1979, 40(4): 469-480.
    [15] MASIN D. A hypoplastic constitutive model for clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(4): 311-336.
    [16] SHENG Dai-chao. Review of fundamental principles in modelling unsaturated soil behavior[J]. Computers and Geotechnics, 2011, 38(6): 757-776.
    [17] KASSIFF G, SHALOM A B. Experimental relationship between swell pressure and suction[J]. Géotechnique, 1971, 21(3): 245-255.
    [18] LLORET A, VILLAR V M, SANCHEZ M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 2003, 53(1): 27-40.
计量
  • 文章访问数:  292
  • HTML全文浏览量:  4
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-21
  • 发布日期:  2015-08-24

目录

    /

    返回文章
    返回