• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同重力下月壤水平推剪阻力离散元数值分析

蒋明镜, 奚邦禄, 申志福, 戴永生

蒋明镜, 奚邦禄, 申志福, 戴永生. 不同重力下月壤水平推剪阻力离散元数值分析[J]. 岩土工程学报, 2015, 37(7): 1300-1306. DOI: 10.11779/CJGE201507017
引用本文: 蒋明镜, 奚邦禄, 申志福, 戴永生. 不同重力下月壤水平推剪阻力离散元数值分析[J]. 岩土工程学报, 2015, 37(7): 1300-1306. DOI: 10.11779/CJGE201507017
JIANG Ming-jing, XI Bang-lu, SHEN Zhi-fu, DAI Yong-sheng. DEM analyses of horizontal pushing resistance under different gravity fields[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1300-1306. DOI: 10.11779/CJGE201507017
Citation: JIANG Ming-jing, XI Bang-lu, SHEN Zhi-fu, DAI Yong-sheng. DEM analyses of horizontal pushing resistance under different gravity fields[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1300-1306. DOI: 10.11779/CJGE201507017

不同重力下月壤水平推剪阻力离散元数值分析  English Version

基金项目: 国家自然科学基金项目(51179128); 国家杰出青年科学基; 金项目(51025932)
详细信息
    作者简介:

    蒋明镜(1965- ),男,教授,博士生导师,主要从事天然结构性黏土、砂土、非饱和土、太空土和深海能源土宏观微观试验、本构模型和数值分析研究。E-mail: mingjing.jiang@tongji.edu.cn。

DEM analyses of horizontal pushing resistance under different gravity fields

  • 摘要: 月面环境下重力场仅为地面环境下的1/6,研究重力场对于开挖阻力的影响,对优化设计月面环境下开挖设备具有重要意义。采用离散单元法模拟不同深度不同重力场下的月壤水平推剪试验(简化的土-开挖机械间相互作用模型),分析了重力场对开挖试验中推剪阻力、能量消耗和破坏面的影响,最后建立推剪阻力与重力场的关系。结果表明:相同推剪深度下,随重力场增大推剪阻力和能量消耗均增加,推剪前方受扰动土体范围减小;随推剪深度增加,推剪阻力增加。
    Abstract: On the lunar surface, the gravity is only 1/6g while it is 1g on the earth surface. Investigating the effects of gravity has great significance to the optimization of excavator designed for lunar excavation. DEM is employed to simulate excavation tests with different excavation depths and gravity fields. The effects of gravity on excavation force, energy consumption and sliding surface are studied. Then the relation among excavation force, depth and gravity is fitted. The results show that the excavation force and energy consumption increase with the gravity while the range of affected area decreases. The excavation force increases with depth.
  • [1] 欧阳自远. 月球科学概论[M]. 北京: 中国宇航出版社, 2005. (OU YANG Zi-yuan. Introduction to lunar science[M]. Beijing: China Astronautic Publishing House, 2005. (in Chinese))
    [2] KING R H, VAN SUSANTE P, GEFREH M A. Analytical models and laboratory measurements of the soil-tool interaction force to push a narrow tool through JSC-1A lunar simulant and Ottawa sand at different cutting depths[J]. Journal of Terramechanics, 2011, 48(1): 85-95.
    [3] GREEN A, ZACNY K, PESTANA J, et al. Investigating the effects of percussion on excavation forces[J]. Journal of Aerospace Engineering, 2012, 26(1): 87-96.
    [4] BOLES W W, SCOTT W D, CONNOLLY J F. Excavation force in reduced gravity environment[J]. Journal of Aerospace Engineering, 1997, 10(2): 99-103.
    [5] BOLES W W, CONNOLLY J F. Lunar excavation research[C]// Engineering, Construction, and Operations in Space V. 1996: 1903-1906.
    [6] OBERMAYR M, DRESSLER K, VRETTOS C, et al. Prediction of draft forces in cohesionless soil with the discrete element method[J]. Journal of Terramechanics, 2011, 48(5): 347-358.
    [7] HETTIARATCHI D R P, REECE A R. Symmetrical three-dimensional soil failure [J]. Journal of Terramechanics, 1967, 4(3): 45-67.
    [8] GODWIN R J, SPOOR G. Soil failure with narrow tines [J]. Journal of Agricultural Engineering Research, 1977, 22(3): 213-228.
    [9] KOBAYASHI T, OCHIAI H, FUHAGAWA S, et al. A proposal for estimating strength parameters of lunar surface from soil cutting resistance[C]// Earth and Space, 2006: 1-8.
    [10] MCKYES E, ALI O S. The cutting of soil by narrow blades[J]. Journal of Terramechanics, 1977, 14(2): 43-58.
    [11] NAKASHIMA H, SHIOJI Y, TATEYAMA K, et al. Specific cutting resistance of lunar regolith simulant under low gravity conditions[J]. Journal of Space Engineering, 2008, 1: 58-68.
    [12] BUI H H, KOBAYASHI T, FUKAGAWA R, et al. Numerical and experimental studies of gravity effect on the mechanism of lunar excavations[J]. Journal of Terramechanics, 2009, 46(3): 115-124.
    [13] 郑 敏, 蒋明镜, 申志福. 简化接触模型的月壤离散元数值分析[J]. 岩土力学, 2011, 31(增刊): 766-771. (ZHENG Min, JIANG Ming-jing, SHEN Zhi-fu. Discrete element numerical analysis of lunar soil with a simplified contact model[J]. Rock and Soil Mechanics, 2011, 31(S0): 766-771. (in Chinese))
    [14] JIANG M J, SHEN Z F, THORNTON C. Microscopic contact model of lunar regolith for high efficiency discrete element analyses[J]. Computers and Geotechnics, 2013, 54: 104-116.
    [15] Lunar and Planetary Institute, Lunar samples by category, soil:10085.Coarse-fines.http://curator.jsc.nasa.gov/lunar/lsc/10085.pdf.
    [16] PERKO H, NELSON J, SADEH W. Surface cleanliness effect on lunar soil shear strength[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 27(4): 371-383.
    [17] ADAMSON A W. Physical chemistry of surfaces[M]. New York: Wiley, 1990.
    [18] JIANG M J, LI L Q, SUN Y G. Properties of TJ-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2011, 25(3): 463-469.
    [19] 蒋明镜, 李立青. TJ-1 模拟月壤的研制[J]. 岩土工程学报, 2011, 33(2): 209-214. (JIANG Ming-jing, LI Li-qing. Development of TJ-1 lunar soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 209-214. (in Chinese))
    [20] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(5): 579-597.
    [21] JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5): 340-357.
    [22] NAKASHIMA H, SHIOJI Y, KOBAYASHI T, et al. Determining the angle of repose of sand under low-gravity conditions using discrete element method[J]. Journal of Terramechanics, 2011, 48(1): 17-26.
    [23] SHMULEBICH I, ASAF A, RUBINSTEIN D. Interaction between soil and a wide cutting blade using the discrete element method[J]. Soil and Tillage Research, 2007, 97(1): 37-50.
    [24] GODWIN R J, O’DOGHERTY M J, SAUNDERS C, et al. A force prediction model for mouldboard ploughs incorporating the effects of soil characteristic properties, plough geometric factors and ploughing speed[J]. Biosystems Engineering, 2007, 97(1): 117-129.
  • 期刊类型引用(25)

    1. 蒙贤忠,夏宇磬,周传波,冯庆高,蒋楠,杨玉民. 土–岩地层水平孔爆破诱发振动传播特征及预测. 岩石力学与工程学报. 2025(03): 737-751 . 百度学术
    2. 乔雄,刘文高,倪伟淋,张伟,杨鑫,黄锦聪,刘锦龙. 基于爆破荷载等效施加方法的振动波形预测与古建筑安全评估. 地震工程学报. 2024(01): 16-25 . 百度学术
    3. 王小飞,胡少斌,王恩元,黄俊,颜正勇. 干冰粉热冲击破岩基坑围护结构振动安全研究. 中国公路学报. 2024(03): 371-381 . 百度学术
    4. 伍福寿,张学民,韩淼,陈进,胡涛,周贤舜,王树英,朱凯. 近接既有隧道爆破激发地震波成分构成及特性研究. 中南大学学报(自然科学版). 2024(04): 1406-1417 . 百度学术
    5. 孙丰森,王海亮,张勇,张雨晨. 埋地输油管道对胶州湾第二海底隧道爆破施工的动力响应. 山东科技大学学报(自然科学版). 2024(03): 75-84 . 百度学术
    6. 李坚,赵岩,周文磊,王海龙. 掏槽爆破作用下振动波形预测及影响分区确定. 工程爆破. 2024(04): 122-130 . 百度学术
    7. 何理,殷琳,钟冬望,张鑫玥,赵永明,熊海涛,陈莎莎,NJAMBA Bruno. 爆破振动强度、波形与频谱研究综述:预测及主动控制. 爆破. 2024(03): 189-204+262 . 百度学术
    8. 望远福,李云赫,赵岩,范杰林. 隧道爆破振动中掏槽段的波形预测方法. 中国测试. 2024(10): 150-156 . 百度学术
    9. 骆峻伟,胡少斌,黄俊,王小飞. 隧道干冰粉膨胀破岩绿色施工技术研究. 现代交通技术. 2024(06): 46-49 . 百度学术
    10. 周贤舜,张学民,武朝光,胡涛,陈鑫磊,段亚. 基于低碳减排的隧道水封爆破优化效果研究. 铁道科学与工程学报. 2023(03): 996-1007 . 百度学术
    11. 张雨晨,王海亮,石晨晨,丁新宇,赵军. 隧道爆破下邻近管道动力响应的数值模拟. 工程爆破. 2023(03): 95-105 . 百度学术
    12. 魏海霞,祝杰,杨小林,褚怀保. 高压气体爆破作用下层状岩体的地表振动效应预测方法. 振动与冲击. 2023(20): 1-11 . 百度学术
    13. 赵珂,蒋楠,周传波,姚颖康,朱斌. 爆破地震荷载作用下埋地燃气管道动力响应尺寸效应研究. 振动与冲击. 2022(02): 64-73 . 百度学术
    14. 刘桂勇,刘小鸣,陈士海. 延时时间对地表振动叠加效应的影响. 工程爆破. 2022(01): 63-70 . 百度学术
    15. 刘潇,欧运平,曹鲁鹏,彭伟哲. 羊头山隧道开挖围岩稳定性监测分析. 甘肃科学学报. 2022(04): 137-140+152 . 百度学术
    16. 李新平,张雪屏,刘飞香,郑博闻,罗忆. 群孔齐发爆破岩体振动频谱特性研究. 爆破. 2021(01): 14-20+35 . 百度学术
    17. 朱斌,蒋楠,周传波,贾永胜,罗学东,吴廷尧. 粉质黏土层直埋铸铁管道爆破地震效应. 浙江大学学报(工学版). 2021(03): 500-510 . 百度学术
    18. 石伟民,何方,陈士海,揭海荣,李海波. 新建隧道下穿既有铁路结构爆破振动影响分区及减震优化. 华侨大学学报(自然科学版). 2021(06): 764-771 . 百度学术
    19. 刘小鸣,陈士海. 群孔微差爆破的地表振动波形预测及其效应分析. 岩土工程学报. 2020(03): 551-560 . 本站查看
    20. 刘航雨,陈寿根. 深埋软岩紧急救援站爆破安全距离的研究. 四川建筑. 2020(02): 145-146+149 . 百度学术
    21. 陈元利,付玉华,郭丽艳,王庆,张康康. “小构造”复杂岩石条件下掏槽爆破的试验研究. 矿业研究与开发. 2020(06): 23-27 . 百度学术
    22. 关祥宏. 矿山隧道掘进围岩稳定性动态监测研究. 矿冶工程. 2020(03): 34-38 . 百度学术
    23. 陈士海,刘小鸣,张子华,林从谋. 隧道掘进爆破诱发隧道后方开挖段地表振动效应分析. 岩土工程学报. 2020(10): 1800-1806 . 本站查看
    24. 陈经鹏,陈士海. 隧道掘进爆破时掌子面前方开挖段的地表振速预测. 华侨大学学报(自然科学版). 2020(06): 718-726 . 百度学术
    25. Chen Li,Shufeng Liang,Yongchao Wang,Long Li,Dianshu Liu. Attenuation Parameters of Blasting Vibration by Fuzzy Nonlinear Regression Analysis. Journal of Beijing Institute of Technology. 2020(04): 520-525 . 必应学术

    其他类型引用(9)

计量
  • 文章访问数:  297
  • HTML全文浏览量:  2
  • PDF下载量:  316
  • 被引次数: 34
出版历程
  • 收稿日期:  2014-07-15
  • 发布日期:  2015-07-19

目录

    /

    返回文章
    返回