• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

路基温度场长期模拟中的地表热边界条件研究

白青波, 李旭, 田亚护

白青波, 李旭, 田亚护. 路基温度场长期模拟中的地表热边界条件研究[J]. 岩土工程学报, 2015, 37(6): 1142-1149. DOI: 10.11779/CJGE201506021
引用本文: 白青波, 李旭, 田亚护. 路基温度场长期模拟中的地表热边界条件研究[J]. 岩土工程学报, 2015, 37(6): 1142-1149. DOI: 10.11779/CJGE201506021
BAI Qing-bo, LI Xu, TIAN Ya-hu. Upper boundary conditions in long-term thermal simulation of subgrade[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1142-1149. DOI: 10.11779/CJGE201506021
Citation: BAI Qing-bo, LI Xu, TIAN Ya-hu. Upper boundary conditions in long-term thermal simulation of subgrade[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1142-1149. DOI: 10.11779/CJGE201506021

路基温度场长期模拟中的地表热边界条件研究  English Version

基金项目: 国家重点基础研究发展计划(973 计划)项目 (2012CB026104);国家自然科学基金项目(51479001, 41271072)
详细信息
    作者简介:

    白青波(1990– ), 男, 硕士研究生, 主要从事冻土水热耦合特性和路基稳定性的研究。E-mail: ceXuLi2012@gmail.com

  • 中图分类号: TU43

Upper boundary conditions in long-term thermal simulation of subgrade

  • 摘要: 在路基温度场模拟中, 地表热边界常基于“附面层原理”确定, 即假设一定深度(附面层厚度)的土体温度函数等于大气日平均温度函数加上一个温度增量。目前, 附面层厚度和温度增量一般通过实际观测值回归分析得到, 尚未建立起相应的理论和参数确定方法, 无法定量分析路面材质、路面结构、太阳辐射、路面辐射对附面层厚度和温度增量的影响。首先通过理论分析, 建立了附面层厚度的确定方法;然后建立了一维路面路基结构温度场模拟模型, 并通过路基温度场反演分析, 验证了数值模型的正确性;进而通过数值分析, 研究了太阳辐射、路面辐射、对流换热和路面结构等因素对附面层底部温度增量的影响, 给出了温度增量的确定方法和相应的设计图表和计算公式。
    Abstract: In the numerical simulation of a long-term temperature field in subgrade, the upper thermal boundaries are often determined by the boundary-layer theory, in which the temperature at a certain depth, i.e., the thickness of boundary layer, can be used as a temperature increment plus an average temperature of atmosphere. Because of the lack of a model, the boundary-layer thickness and the temperature increment are usually extracted from the monitored data of subgrade temperature in field. The objective of this study is to develop a model for the determination of the boundary-layer thickness and temperature increment. A theoretical derivation is carried out and leads to a solution of the thickness of boundary layer. Then a numerical model is established to simulate the temperature field in pavement and subgrade. The numerical model is verified through the back analysis of a case study. Furthermore, a sensitive study is carried out to study the impact of solar radiation, pavement materials, pavement structure and pavement radiation on the temperature increment, resulting in an empirical equation and a design chart.
  • [1] 朱林楠. 高原冻土区不同下垫面的附面层研究[J]. 冰川冻 土, 1988, 10(1): 8–14. (ZHU Lin-nan. Study of the adherent layer on different types of ground in permafrost regions on the Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1988, 10(1): 8–14. (in Chinese))
    [2] HERRMANN S, KLAUS G, KRAUSE E, et al. Boundary-Layer theory[M]. Springer-Verlag, 2000, 8th, ed.
    [3] 严作人. 层状路面体系的温度场分析[J]. 同济大学学报, 1984(3): 76–85. (YAN Zuo-ren. Analysis of the temperature field in layered pavement system[J]. Journal of Tongji University, 1984(3): 76–85. (in Chinese))
    [4] 王厚华. 传热学[M]. 重庆: 重庆大学出版社, 2006: 71– 74. (WANG Hou-hua. Heat transfer[M]. Chongqing: Chongqing University Press, 2006: 71–74. (in Chinese))
    [5] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出 版社, 2001: 75–98. (XU Xue-zu, WANG Jia-cheng, ZHANG Li-xin. Permafrost physics[M]. Beijing: Science Press, 2001: 75–98. (in Chinese))
    [6] 雷向前. 青藏高原路基材料(沥青、混凝土)比热容的测 定[J]. 理工, 2010(3): 67- 68. (LEI Xiang-qian. Determination of specific heat capacity of material (asphalt, concrete) for plateau roadbed[J]. Science and Technology, 2010(3): 67–68. (in Chinese))
    [7] 张慧彧, 邹 玲, 纪小平. 沥青混合料导热系数的试验研 究[J]. 公路, 2011(10): 50–51. (ZHANG Hui-biao, ZOU Ling, JI Xiao-ping. Experimental study on the thermal conductivity of asphalt mixtures[J]. Highway, 2011(10): 50– 51. (in Chinese))
    [8] 王铁行. 多年冻土地区路基计算原理及临界高度研究[D]. 西安: 长安大学, 2000. (WANG Tie-xing. Research on calculation principle and critical height of subgrade in permafrost regions[D]. Xi'an: Chang'an University, 2000. (in Chinese))
    [9] 毛雪松, 陆 鹿, 侯仲杰, 等. 水泥混凝土路面的路基温 度场测试及数值模拟[J]. 长安大学学报(自然科学版), 2011, 31(2): 1–5. (MAO Xue-song, LU Lu, HOU Zhong-jie, et al. Text and numerical simulation on subgrade temperature field of cement concrete pavement structure[J]. Journal of Chang'an University(Natural Science Edition), 2011, 31(2): 1-5. (in Chinese))
    [10] 钱滨江, 伍贻文, 常家芳, 等. 简明传热手册[M]. 北京: 高等教育出版社, 1983: 364–399. (QIAN Bin-jiang, WU Yi-wen, CHANG Jia-fang, et al. Heat concise manual[M]. Beijing: China Higher Education Press, 1983: 364–399. (in Chinese))
    [11] 李源渊, 李艳春, 孙建勇. 沥青路面对城市热岛效应的影 响分析[J]. 公路交通科技, 2009(4): 36-38. (LI Yuan-yuan, LI Yan-chun, SUN Jian-yong. Impact of asphalt road on the heat island in city[J]. Municipal and Public Construction, 2009(4): 36–38. (in Chinese))
    [12] 毛雪松, 马 骉. 基于水热耦合效应的冻土路基稳定性研 究[M]. 北京: 人民交通出版社, 2011: 76–85. (MAO Xue-song, MA Biao. Studies on the stability of permafrost subgrade based on coupled water and heat transfer[M]. Beijing: China Communications Press, 2011: 76–85. (in Chinese))
    [13] 冯德成, 胡伟超, 于 飞, 等. 沥青路面材料热物性参数 对温度场的影响及敏感性分析[J]. 公路交通科技, 2011, 28(11): 12–19. (FENG De-cheng, HU Wei-chao, YU Fei, et al. Impact of asphalt pavement thermophysical property on temperature field and sensitivity analysis[J]. Journal of Highway and Transportation Research and Development, 2011, 28(11): 12–19. (in Chinese))
    [14] 朱志武, 宋顺成. 冻土地区路基温度场数值分析[J]. 路基 工程, 2008(2): 18–19. (ZHU Zhi-wu, SONG Shun-cheng. Numerical analysis of subgrade temperature field in permafrost region[J]. Subgrade Engineering, 2008(2): 18–19. (in Chinese))
    [15] JTG D40—2002 公路水泥混凝土路面设计规范[S]. 2003. (JTG D40 - 2002 Specifications of cement concrete pavement design for highway[S]. 2003. (in Chinese))
    [16] 翁笃鸣. 中国太阳直接辐射的气候计算及其分布特征[J]. 太阳能学报, 1986, 7(2): 121–130. (WENG Du-ming. Climatical method for direct solar radiation calculation and its distribution over China[J]. Acta Energiae Solaris Sinica, 1986, 7(2): 121–130. (in Chinese))
    [17] 马有哲, 刘小宁, 许 松. 中国太阳辐射数据集及其质量 检测分析[J]. 气象科技, 1998(2): 53–56. (MA You-zhe, LIU Xiao-ning, XU Song. Analysis of data set and quality inspection of solar radiation in China[J]. Meteorological Science and Technology, 1998(2): 53–56. (in Chinese))
    [18] 吴其重, 王自发, 崔应杰. 我国近20 年太阳辐射时空分布 状况模式评估[J]. 应用气象学报, 2010, 21(3): 343–351. (WU Qi-zhong, WANG Zi-fa, CUI Ying-jie. Evaluating the solar radiation Resources of China in recent 20 years by meteorological model[J]. Journal of Applied Meteorological Science, 2010, 21(3): 343–351. (in Chinese))
    [19] 汪海年, 窦明健, 吴敏慧. 青藏高原冻土区路面类型对路 基温度场影响的非线性分析[J]. 冰川冻土, 2005, 27(2): 169–175. (WANG Hai-nian, DOU Ming-jian, WU Min-hui. Nonlinear analysis of the influence of pavement types on embankment thermal regime in permafrost regions on the tibetan plateau[J]. Journal of Glaciology and Geocryology, 2005, 27(2): 169–175. (in Chinese))
    [20] 查良松. 我国地面太阳辐射量的时空变化研究[J]. 地理科 学, 1996, 16(3): 223–237. (CHA Liang-song. A study on spatial and temporal variation of solar radiation in China[J]. Scientia Geographica Sinica, 1996, 16(3): 223–237. (in Chinese))
  • 期刊类型引用(1)

    1. 于思冬,朱熊彪. 基于非接触式加载的海上风机桩土相互作用模型试验. 吉林水利. 2025(02): 12-17 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 1
出版历程
  • 收稿日期:  2014-06-10
  • 发布日期:  2015-06-18

目录

    /

    返回文章
    返回