• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

层状饱和介质中瑞利波传播特性薄层分析方法

柴华友, 张电吉, 卢海林, 杨典森, 周春梅

柴华友, 张电吉, 卢海林, 杨典森, 周春梅. 层状饱和介质中瑞利波传播特性薄层分析方法[J]. 岩土工程学报, 2015, 37(6): 1132-1141. DOI: 10.11779/CJGE201506020
引用本文: 柴华友, 张电吉, 卢海林, 杨典森, 周春梅. 层状饱和介质中瑞利波传播特性薄层分析方法[J]. 岩土工程学报, 2015, 37(6): 1132-1141. DOI: 10.11779/CJGE201506020
CHAI Hua-you, ZHANG Dian-ji, LU Hai-lin, YANG Dian-sen, ZHOU Chun-mei. Behavior of Rayleigh waves in layered saturated porous media using thin-layer method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1132-1141. DOI: 10.11779/CJGE201506020
Citation: CHAI Hua-you, ZHANG Dian-ji, LU Hai-lin, YANG Dian-sen, ZHOU Chun-mei. Behavior of Rayleigh waves in layered saturated porous media using thin-layer method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1132-1141. DOI: 10.11779/CJGE201506020

层状饱和介质中瑞利波传播特性薄层分析方法  English Version

基金项目: 国家自然科学基金面上项目(41474113, 51474159);武汉 工程大学人才专项经费项目
详细信息
    作者简介:

    柴华友(1965– ), 男, 博士, 特聘教授, 从事波动测试技术及方法的教学和科研。E-mail: chy_rsm@hotmail.com

  • 中图分类号: TU435;P631.4

Behavior of Rayleigh waves in layered saturated porous media using thin-layer method

  • 摘要: 层状饱和半无限体中瑞利波传播特性研究对工程物理勘探及土性参数反演很重要, 传统的层传递矩阵或刚度矩阵分析方法需在复数域搜索瑞利波频率方程根, 不仅耗时, 收敛性也差。根据研究波长范围, 在底部半无限体某一深度设置刚性边界, 将层状介质离散成薄层, 建立研究平面应变状态下层状饱和介质中瑞利波传播特性薄层法分析模型。依据该模型, 频率方程根搜索问题可转换成矩阵特征值问题。根据瑞利波沿深度衰减特性, 从一组计算的特征值中筛选出与瑞利波模态对应特征值, 由特征值及相应特征向量得到各模态频率特性以及孔隙压力、骨架位移随深度变化。通过与饱和半无限体瑞利波解析解比较, 验证该模型可行性, 由此研究几种层状介质中瑞利波各阶模态的频率特性。分析方法对开展动力本构模型更复杂的层状介质中瑞利波传播特性研究也具有指导意义。
    Abstract: Frequency behavior of Rayleigh waves in layered saturated poroelastic media is improtant for engineering geophysical prospecting and inversion of soil properties. The frequency equation of Rayleigh waves can be solved using the root searching algorithms in the conventional analysis method of the transfer or stiffness matrix. However, these algorithms are time-consuming in the complex domain and the root convergence is often poor. In this study, a rigid base is set at a certain depth of the half space which is estimated from the interested wavelength and the layers are discretized into a group of thin layers. The thin-layer model is then established to study the propagation behavior of Rayleigh waves in saturated poroelastic layered media under the plane strain conditions. In this model, the root searching problem is converted into the eigenvalue and eigenvector problem of matrices. The eigenvalues corresponding to the modes of Rayleigh waves can be sifted out from the calculated ones according to the attenuation of Rayleigh waves along depth. The frequency behavior, pore pressure and skeleton displacements of Rayleigh waves along depth can be calculated from the sifted eigenvalues and eigenvectors. The model developed is validated by comparing the numerical and the analytical results in the saturated poroelastic half space. The model is then used to study the frequency behavior of Rayleigh waves in several layered saturated porous half spaces. The method also provides some guidelines for investigating Rayleigh waves in layered media with more complex dynamic constitutive models.
  • [1] 赵海波, 陈树民, 李来林, 等. 流体饱和度对Rayleigh 波 传播影响研究[J]. 中国科学 (物理学力学天文学), 2012, 42(2): 148–155. (ZHAO Hai-bo, CHEN Shu-min, LI Lai-lin, et al. Influence of fluid saturation on Rayleigh wave propagation[J]. Scientia Sinica (Physica Mechanica & Astronomica), 2012, 42(2): 148–155. (in Chinese))
    [2] KAREL N D. Multi-component acoustic characterization of porous media[D]. Delf: Technische Universiteit Delft, 2011.
    [3] DERESIEWICS H. The effect of boundaries on wave propagation in a liquid-filled porous solid: IV. Surface waves in a half-space[J]. Bulletin of the Seismological Society of America, 1962, 52(3): 627–638.
    [4] FENG S, JOHNSON D L. High-frequency acoustic properties of a fluid/porous solid interface, I. New surface mode[J]. Journal of the Acoustical Society of America, 1983, 73(3): 906–914.
    [5] ALBERS B. Porous media: modeling and application to wave propagation[M]. Graz: Course at the Technical University of Graz, 2008.
    [6] 夏唐代, 陈龙珠, 吴世明, 等. 半空间饱和土中瑞利波特性 [J]. 水利学报, 1998, 10(2): 47–53. (XIA Tang-dai, CHEN Long-zhu, WU Shi-ming, et al. Characteristics of Rayleigh waves in a saturated half-space soil[J]. Journal of Hydraulic Engineering, 1998, 10(2): 47–53. (in Chinese))
    [7] 陈龙珠, 黄秋菊, 夏唐代. 饱和地基中瑞利波的弥散特性. 岩土工程学报, 1998, 20(3): 6–9. (CHEN Long-zhu, HUANG Qiu-ju, XIA Tang-dai. Dispersion of Rayleigh wave in a saturated soil ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 6–9. (in Chinese))
    [8] 黄茂松, 李进军. 饱和多孔介质土动力学理论与数值解法 [J]. 同济大学学报(自然科学版), 2004, 32(7): 851–856. (HUANG Mao-song, LI Jin-jun. Dynamics of fluid-saturated porous media and its numerical solution[J]. Journal of Tongji University (Natural Science), 2004, 32(7): 851–856. (in Chinese))
    [9] GERASIK V. Energy transport in saturated porous media[D]. Waterloo: the University of Waterlo, 2011.
    [10] PHILIPPACOPOULOS A J. Waves in a partially saturated layered half-space: Analytic formulation[J]. Bulletin of the Seismological Society of America, 1987, 77(5): 1838–1853.
    [11] DEGRANDE G, ROECK G D, BROECK P V D, et al. Wave propagation in layered dry, saturated and unsaturated poroelastic media[J]. International Journal of Solids and Structures, 1998, 35(34/35): 4753–4778.
    [12] 夏唐代, 颜可珍, 孙鸣宇. 饱和土层中瑞利波的传播特性. 水利学报, 2004(11): 1–5. (XIA Tang-dai, YAN Ke-zhen, SUN Ming-yu. Propagation of Rayleigh wave in saturated soil layer[J]. Journal of Hydraulic Engineering, 2004(11): 1-5. (in Chinese))
    [13] LU L Y, ZHANG B X. Analysis of dispersion curves of Rayleigh waves in the frequency-wavenumber domain [J]. Canadian Geotechnical Journal, 2004, 41(4): 583–598.
    [14] 凡友华, 刘家琦, 肖柏勋. 计算瑞利波频散曲线的快速矢 量算法[J]. 湖南大学学报 (自然科学版), 2002, 29(5): 25– 30. (FAN You-hua, LIU Jia-qi, XIAO Bai-xun. Fast vector-transfer algorithm for computation of Rayleigh wave dispersion curves[J]. Journal of Hunan University (Natural Sciences Edition), 2002, 29(5): 25–30. (in Chinese))
    [15] 夏唐代, 陈云敏, 吴世明. 匀质软夹层地基瑞利波弥散特 性[J]. 振动工程学报, 1993, 6(1): 42–50. (XIA Tang-dai, CHEN Yun-min, WU Shi-ming. Rayleigh wave dispersion in soil profiles where a softer layer is trapped between harder layers[J]. Journal of vibration Engineering, 1993, 6(1): 42– 50. (in Chinese))
    [16] KAUSEL E, ROЁSSET J M. Stiffness matrices for layered soils[J]. Bulletin of the Seismological Society of America, 1981, 71(6): 1743–1746.
    [17] KAUSEL E. The thin-layer method in seismology and earthquake engineering[M]// Southampton: WIT Press, 2001.
    [18] CHAI H Y, PHOON K K, WEI C F, LU Y F. Analysis of effects of active sources on observed phase velocity based on the thin-layer method[J]. Journal of Applied Geophysics, 2011, 73(1): 49–58.
    [19] 柴华友, 白世伟, 刘明贵, 等. 瑞利波特性刚度矩阵研究 [J]. 岩土力学, 2006, 27(2): 209–213. (CHAI Hua-you, BAI Shi-wei, LIU Ming-gui, et al. Analysis of behaviour of Rayleigh waves by stiffness matrix method[J]. Rock and Soil Mechanics, 2006, 27(2): 209–213. (in Chinese))
    [20] 柴华友, 韦昌富. 刚度缓变系统中瑞利波特性[J]. 岩土力 学, 2009, 30(9): 2545–2551. (CHAI Hua-you, WEI Chang-fu. Behavior of Rayleigh waves in media with smoothly varying stiffness profile[J]. Rock and Soil Mechanics, 2009, 30(9): 2545–2551. (in Chinese))
    [21] 柴华友, 韦昌富, 白世伟. 表面波有效相速度的近似分析 方法[J]. 岩土力学, 2008, 29(1): 87–93. (CHAI Hua-you WEI Chang-fu, BAI Shi-wei. Approximate approach to analyzing effective velocity of surface waves[J]. Rock and Soil Mechanics, 2008, 29(1): 87–93. (in Chinese))
    [22] 柴华友, 张电吉, 韦昌富, 等. 层状地基中表面波有效相 速度[J]. 岩土工程学报, 2009, 31(6): 892–898. (CHAI Hua-you, ZHANG Dian-ji, WEI Chang-fu, LU Ying-fa. Effective phase velocity of surface waves in layered soil media[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 892–898. (in Chinese))
    [23] 柴华友, 韦昌富, 张电吉, 等. 分层参数对表面波有效相 速度影响[J]. 水利学报, 2010, 41(6): 677–683. (CHAI Hua-you, WEI Chang-fu, ZHANG Dian-ji, et al. Effects of soil parameters on effective phase velocity of surface waves[J]. Journal of Hydraulic Engineering, 2010, 41(6): 677-683. (in Chinese))
    [24] CHAI H Y, CUI Y J, WEI C F. A parametric study of effective phase velocity of surface waves in layered media[J]. Computers and Geotechnics, 2012, 44: 176–184.
    [25] NOGAMI T, KAZAMA M. Dynamic response analysis of submerged soil by thin layer element method[J]. Soil Dynamics and Earthquake Engineering, 1992, 11(1): 17–26.
    [26] NOGAMI T, KAZAMA M. Thin layer element method for dynamic soil-structure interaction analysis of axi-symmetric structure in submerged soil[J]. Soil Dynamics and Earthquake Engineering, 1997, 16(5): 337–351.
    [27] BOUGACHA S, TASSOULAS J L, ROЁSSET J M. Analysis of foundations on fluid-filled poroelastic stratum[J]. Journal of Engineering Mechanics, 1993, 119(8): 1632–1648.
    [28] BOUGACHA S, TASSOULAS J L. Seismic analysis of gravity dams I: modelling of sediments[J]. Journal of Engineering Mechanics, 1991, 117(8): 1826–1837.
    [29] BOUGACHA S, TASSOULAS J L. Dam-water-sedimentrock systems: seismic analysis[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(6): 680–693.
    [30] SENJUNTICHAI T, RAJAPAKSE R K N D. Exact stiffness method for quasi-statics of a multi-layered poroelastic medium[J]. International Journal of Solids and Structures, 1995, 32(11): 1535–1553.
    [31] DEGRANDE G, ROECK G D. An absorbing boundary condition for wave propagation in saturated poroelastic media part I: formulation and efficiency evaluation[J]. Soil Dynamics and Earthquake Engineering, 1993, 12(7): 411– 421.
  • 期刊类型引用(14)

    1. 汤连生,杜继杰,黄家宁,陈洋,程子华,丁威涯. 钢架-土工材料系统预加固流塑土力学机理及参数敏感性分析. 水文地质工程地质. 2025(02): 85-93 . 百度学术
    2. 胡庭婷. 粉煤灰回填双层结构地基建筑极限承载力计算. 粉煤灰综合利用. 2024(06): 54-58 . 百度学术
    3. 于旭光,田汉儒. 基于幂强化-理想塑性模型的深埋圆形水工衬砌隧洞弹塑性解. 特种结构. 2023(01): 29-37 . 百度学术
    4. 纪加强,曹雪叶,兰永强. 基于三剪应力统一强度理论的条形地基承载力计算. 延安大学学报(自然科学版). 2023(01): 57-62 . 百度学术
    5. 尚阳光,杨自友,高鹏,张煜. 非等压圆形巷道围岩塑性分析. 四川轻化工大学学报(自然科学版). 2023(06): 81-88 . 百度学术
    6. 马甲宽,罗丽娟,任翔,时航,尹怡墨. 基于统一强度理论的螺纹桩承载力计算方法. 上海交通大学学报. 2022(06): 754-763 . 百度学术
    7. 于旭光. 基于对数应变考虑渗流影响的软弱围岩圆形隧洞弹塑性解. 隧道建设(中英文). 2022(07): 1227-1238 . 百度学术
    8. 何利超,陆旭旭,赵新铭,姜波,潘建伍. 淤泥质土堤防边坡稳定性硬壳层作用效应分析. 港工技术. 2022(05): 30-35+58 . 百度学术
    9. 胡君. 基于分层总和法的建筑岩土工程勘察地基承载力分析. 城市建筑. 2022(20): 138-140 . 百度学术
    10. 罗宇霖,李雪宇,刘启,文武飞. 硬壳层软土地基应力分布研究. 四川建筑. 2022(06): 157-160 . 百度学术
    11. 于旭光,毕南妮,杨海林. 考虑渗流、应变软化和扩容的巷道围岩三剪应力统一强度理论解. 特种结构. 2021(02): 11-20+33 . 百度学术
    12. 高江平,杨继强,孙昕. 考虑双剪中主应力影响系数的D-P系列屈服准则研究. 岩石力学与工程学报. 2021(06): 1081-1091 . 百度学术
    13. 于旭光,郑宏. 考虑渗流影响的幂强化-理想塑性模型圆形隧洞围岩弹塑性新解. 长江科学院院报. 2021(07): 102-108+114 . 百度学术
    14. 杨继强,孙昕,崔向东. 基于双剪统一强度理论的地基承载力计算方法研究. 岩石力学与工程学报. 2021(09): 1923-1932 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 23
出版历程
  • 收稿日期:  2014-07-15
  • 发布日期:  2015-06-18

目录

    /

    返回文章
    返回