• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于颗粒流原理的岩石类材料细观参数的试验研究

丛宇, 王在泉, 郑颖人, 冯夏庭

丛宇, 王在泉, 郑颖人, 冯夏庭. 基于颗粒流原理的岩石类材料细观参数的试验研究[J]. 岩土工程学报, 2015, 37(6): 1031-1040. DOI: 10.11779/CJGE201506009
引用本文: 丛宇, 王在泉, 郑颖人, 冯夏庭. 基于颗粒流原理的岩石类材料细观参数的试验研究[J]. 岩土工程学报, 2015, 37(6): 1031-1040. DOI: 10.11779/CJGE201506009
CONG Yu, WANG Zai-quan, ZHENG Ying-ren, FENG Xia-ting. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. DOI: 10.11779/CJGE201506009
Citation: CONG Yu, WANG Zai-quan, ZHENG Ying-ren, FENG Xia-ting. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. DOI: 10.11779/CJGE201506009

基于颗粒流原理的岩石类材料细观参数的试验研究  English Version

基金项目: 国家自然科学基金项目(41372298, 11232024, 41320104005);国家重点基础研究发展计划(973 计划)项目 (2011CB013600)
详细信息
    作者简介:

    丛 宇(1984– ), 男, 山东威海人, 在站博士后, 研究方向为岩石力学及地下工程稳定性方面。E-mail: cuncin@163.com

  • 中图分类号: TU45

Experimental study on microscopic parameters of brittle materials based on particle flow theory

  • 摘要: 材料的宏观力学特征与细观参数密切相关, 基于颗粒流原理探究两者间的定量相关性, 结合大理岩室内加、卸荷试验确定适用于岩石类材料(如大理岩)的细观参数, 为细观分析岩石类材料卸荷破坏机理提供依据。结果表明:①平行黏结弹性模量是宏观弹性模量的主要控制因素, 两者之间呈线性关系;泊松比与黏结弹性模量间呈多项式关系。材料弹性模量与泊松比的调试应以颗粒黏结弹性模量与平行黏结弹性模量作为主要对象。②平行黏结切向强度均值与平行黏结法向强度均值共同作用改变材料的应力–应变曲线, 平行黏结法向强度均值与峰值应力间呈多项式关系;平行黏结切向强度均值与峰值应力间呈对数关系。③颗粒法向强度与切向强度之间的相对关系是裂纹分布多样化的本质 原因:平行黏结法向(切向)强度均值与其标准差的比值在1 附近时, 岩样共轭破坏, 比值增大或减小均会引起模型破坏面向剪切转变, 同时平行黏结切向强度均值或其标准差增大会改变贯通性主破坏面的方向。④摩擦因数增加, 岩样次生破坏面减少, 但不会改变破坏面的方向。⑤大理岩室内试验的宏观力学特征表明通过正交设计试验可以得到基本合理的细观参数。
    Abstract: The macroscopic mechanical properties of materials are closely related to their microscopic parameters. The quantitative correlation between them is explored based on the theory of particle flow code. The microscopic parameters are confirmed through laboratory tests on marble under loading and unloading, which are suitable for brittle materials (such as marble), so as to provide the foundation for microscopic analysis of the unloading failure mechanism of brittle materials. The results show that: (1) Young's modulus of parallel-bond is the main controlling factor of macroscopic Young's modulus, and there is a linear relationship between them. Poisson's ratio is the polynomial function of Young's modulus of bond. The main objects of debugging materials of Young's modulus and Poisson's ratio are Young's modulis of parallel-bond and contact. (2) The joint action between the mean parallel-bond normal strength and shear strength influences the stress-strain curve of materials, and the mean parallel-bond normal strength is the polynomial function of the peak stress. The relationship between the mean parallel-bond shear strength and the peak stress is a log function one. (3) The essential reason for diversity of crack distribution is the relative relationship between normal strength and shear strength of particles: the failure type is conjugate damage when the ratio of the mean value of parallel-bond normal (shear) strength to the standard deviation is around 1; increase or decrease of the ratio causes the change from conjugate to shear damage, and increase of the mean value or standard deviation of parallel-bond shear strength causes the change of the direction of main failure surface. (4) The secondary failure surface of samples decreases with the increase of friction coefficient, however, the direction of failure surface will not change. (5) The macroscopic mechanical properties of marble tests show that the basic reasonable microscopic parameters can be obtained through orthogonal tests.
  • [1] 朱焕春. PFC 及其在矿山崩落开采研究中的应用[J]. 岩石 力学与工程学报, 2006, 25(9): 1927–1931. (ZHU Huan-chun. PFC and application case of caving study[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1927–1931. (in Chinese))
    [2] 周 健, 杨永香, 刘 洋, 等. 循环荷载下砂土液化特性颗 粒流数值模拟[J]. 岩土力学, 2009, 30(4): 1083–1088. (ZHOU Jian, YANG Yong-xiang, LIU Yang, et al. Numerical modeling of sand liquefaction behavior under cyclic loading[J]. Rock and Soil Mechanics, 2009, 30(4): 1927– 1931. (in Chinese))
    [3] BILLAUX D, DEDECKER F, CUNDALL P. A novel approach to studying rock damage: the three-dimensional adaptive continuum/discontimuum code[J]. Rock Engineering, 2004: 723–728.
    [4] 杜 鹃. 二维颗粒流程序PFC2D特点及其应用现状综述[J]. 安徽建筑工业学院学报, 2009, 17(5): 68–70. (DU Juan. The overview of characteristics and applications of PFC2D[J]. Journal of Anhui Institute of Architecture & Industry, 2009, 17(5): 68–70. (in Chinese))
    [5] AN B. A study of energy loss during rock impact using PFC2D[D]. Ed Manton: Department of Civil and Environmental Engineering, 2006.
    [6] 吴顺川, 周 喻, 高 斌, 等. 卸荷岩爆试验及PFC3D数值 模拟研究[J]. 岩石力学与工程学报, 2010, 29(増刊2): 4082-4088. (WU Shun-chuan, ZHOU Yu, GAO Bin, et al. Study of unloading tests of rock burst and PFC3D numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 4082–4088. (in Chinese))
    [7] 杨 庆, 刘元俊. 岩石类材料裂纹扩展贯通的颗粒流模拟 [J]. 岩石力学与工程学报, 2012, 31(增刊1): 3123–3129. (YANG Qing, LIU Yuan-jun. Simulations of crack propagation in rock-like materials using particle flow code[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3123–3129. (in Chinese))
    [8] 刘顺桂, 刘海宁, 王思敬, 等. 断续节理直剪试验与PFC2D 数值模拟的分析[J]. 岩石力学与工程学报, 2008, 27(9): 1828–1836. (LIU Shun-gui, LIU Hai-ning, WANG Si-jing, et al. Direct shear tests and PFC2D numerical simulation of intermittent joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1828–1836. (in Chinese))
    [9] 孟云伟, 柴贺军. 颗粒流离散元在滑坡运动过程模拟中的 应用[J]. 岩土力学, 2006, 27(增刊2): 348–352. (MENG Yun-wei, CHAI He-jun. Application of particle flow code to simulation of movement of landslide[J]. Rock and Soil Mechanics, 2006, 27(S2): 348–352. (in Chinese))
    [10] CAI M, KAISER P K, MARTIN C D. Quantification of rock mass damage in underground excavation from microseismic event monitoring[J]. International Journal of Rock Mechanics and Mining Science, 2001, 38: 1135–1145.
    [11] CAI M, KAISER P K, TASAKA Y, et al. Peak and residual strengths of jointed rock mass and their determination for engineering design[J]. Rock Mechanics, 2007: 259–267.
    [12] HUANG H Y. Discrete element modeling of tool rock interaction[D]. Minnesota: University of Minnesota, 1999.
    [13] NARDIN A, SCHREFLER B A. Modelling of cutting tool soil interaction part II: macromechanical model and upscaling[J]. Computer Mechanics, 2005, 36(5): 343–359.
    [14] 徐金明, 谢芝蕾, 贾海涛. 石灰岩细观力学特性的颗粒流 模拟[J]. 岩土力学, 2010, 31(增刊2): 390–395. (XU Jin-ming, XIE Zhi-lei, JIA Hai-tao. Simulation of mesomechanical properties of limestone using particle flow code[J]. Rock and Soil Mechanics, 2010, 31(S2): 390–395. (in Chinese))
    [15] 尹成薇, 梁 冰, 姜利国. 基于颗粒流方法的砂土宏–细 观参数关系分析[J]. 煤炭学报, 2011, 36(增刊2): 264–267. (YIN Cheng-wei, LIANG Bing, JIANG Li-guo. Analysis of relationship between macro-micro-parameters of sandy soil based on particle flow theory[J]. Journal of China Coal Society, 2011, 36(S2): 264–267. (in Chinese))
    [16] 赵国彦, 戴 兵, 马 驰. 平行黏结模型中细观参数对宏 观特性影响研究[J]. 岩石力学与工程学报, 2012, 31(7): 1491–1498. (ZHAO Guo-yan, DAI Bing, MA Chi. Study of effects of microparameters on macroproperties for parallel bonded model[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1491–1498. (in Chinese))
    [17] 徐小敏, 凌道盛, 陈云敏, 等. 基于线性接触模型的颗粒 材料细–宏观弹性常数相关关系研究[J]. 岩土工程学报, 2011, 32(7): 991–998. (XU Xiao-min, Ling Dao-sheng, CHEN Yun-min, et al. Correlation of microscopic and macroscopic elastic constants of granular materials based on linear contact model[J]. Chinese Journal of Geotechnical Engineering, 2011, 32(7): 991–998. (in Chinese))
    [18] 尹小涛, 李春光, 王水林, 等. 岩土材料细观、宏观强度参 数的关系研究[J]. 固体力学学报, 2011, 32: 343–351. (YIN Xiao-tao, LI Chun-guang, WANG Shui-lin, et al. Study on relationship between micro-parameters and macro-parameters of rock and soil material[J]. Chinese Journal of Solid Mechanics, 2011, 32: 343–351. (in Chinese))
    [19] 陈建峰, 李辉利, 周 健, 等. 黏性土宏细观参数相关性 研究[J]. 力学季刊, 2010, 31(2): 304–309. (CHEN Jian-feng, LI Hui-li, ZHOU Jian, et al. Study on the relevance of macro-micro parameters for clays[J]. Chinese Quarterly of Mechanics, 2010, 31(2): 991–998. (in Chinese)).
    [20] 周 博, 汪华斌, 赵文锋, 等. 黏性材料细观与宏观力学 参数相关性研究[J]. 岩土力学, 2012, 33(10): 3171–3178. (ZHOU Bo, WANG Hua-bin, ZHAO Wen-feng, et al. Analysis of relationship between particle mesoscopic and macroscopic mechanical parameters of cohesive materials[J]. Rock and Soil Mechanics, 2012, 33(10): 3171–3178. (in Chinese))
    [21] 刘新荣, 傅 晏, 郑颖人, 等. 颗粒流细观强度参数与岩 石断裂韧度之间的关系[J]. 岩石力学与工程学报, 2011, 30(10): 2084–2089. (LIU Xin-rong, FU Yan, ZHENG Ying-ren, et al. Relation between meso-parameters of particle flow code and fracture toughness of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2084– 2089. (in Chinese))
    [22] CUNALL P A. Formulation of a three-dimensional distinct element model: I a scheme to detect and represent contacts in a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Sciences, 1988, 25(3): 107–116.
    [23] Itasca Consulting Group Inc. PFC2D particle flow code in 2 dimensions: fish in PFC2D[M]. Minneapolis: Minnesota, 2004.
    [24] Itasca Consulting Group Inc. PFC2D particle flow code in 2 dimensions: theory and background[M]. Minneapolis: Itasca Consulting Group Inc, 2004.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-16
  • 发布日期:  2015-06-18

目录

    /

    返回文章
    返回