• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不排水加载条件下K0固结饱和砂土失稳预测

吕玺琳, 钱建固, 黄茂松

吕玺琳, 钱建固, 黄茂松. 不排水加载条件下K0固结饱和砂土失稳预测[J]. 岩土工程学报, 2015, 37(6): 1010-1015. DOI: 10.11779/CJGE201506006
引用本文: 吕玺琳, 钱建固, 黄茂松. 不排水加载条件下K0固结饱和砂土失稳预测[J]. 岩土工程学报, 2015, 37(6): 1010-1015. DOI: 10.11779/CJGE201506006
Lü Xi-lin, QIAN Jian-gu, HUANG Mao-song. Prediction of instability of K0-consolidated saturated sands under undrained loading conditions[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1010-1015. DOI: 10.11779/CJGE201506006
Citation: Lü Xi-lin, QIAN Jian-gu, HUANG Mao-song. Prediction of instability of K0-consolidated saturated sands under undrained loading conditions[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1010-1015. DOI: 10.11779/CJGE201506006

不排水加载条件下K0固结饱和砂土失稳预测  English Version

基金项目: 国家重点基础研究发展计划(973 计划)课题 (2012CB719803);国家自然科学基金项目(11372228);上海市自然科 学基金项目(13ZR1443800)
详细信息
    作者简介:

    吕玺琳(1981– ), 男, 重庆人, 博士, 副教授, 从事岩土力学与工程方面研究。E-mail: xilinlu@tongji.edu.cn

  • 中图分类号: TU43

Prediction of instability of K0-consolidated saturated sands under undrained loading conditions

  • 摘要: 基于二阶功准则及变形分叉理论, 建立了分散性失稳和应变局部化失稳的理论判别准则, 对K0固结不排水加载条件下饱和砂土的失稳特性进行了理论研究。分析结果表明, 三轴应力状态下, 土体表现为分散性失稳模式, 应变局部化则不会发生。在试样初始状态较密实的状态下, 由于相变作用, 土体能够保持稳定, 直至达到塑性极限破坏。在平面应变状态下, 分散性失稳和应变局部化均可能发生, 且分散性失稳先于应变局部化失稳出现。非共轴塑性流动法则的引入对分散性失稳预测结果无影响, 然而对应变局部化的预测结果影响较大, 且只有在引入了非共轴流动法则的条件下, 应变局部化的理论预测结果才能与试验结果一致。
    Abstract: Based on the second-order work criterion and bifurcation analysis, the framework for predicting the onset of diffuse instability and strain localization are proposed to study the instability of soils under K0-consolidated undrained loading conditions. The analysis shows that the diffuse instability occurs in triaxial tests while the strain localization does not occur. The onset of diffuse instability relies on the initial void ratio of the specimen, and if the soil is dense enough, the soil specimen keeps stable until plastic limit due to the phase transformation. Under the plane strain conditions, the diffuse instability precedes the strain localization, and with further loading, the diffuse instability transits to strain localization. The inclusion of the non-coaxial plasticity flow rule has significant influence on the onset of strain localization, and the predicted results agree well with the experiments only if the non-coaxial flow rule is considered, while it shows no influence on the prediction of diffuse instability.
  • [1] LADE P V. Static instability and liquefaction of loose fine sandy slopes[J]. Journal of Geotechnical and Geoenviromental Engineering, ASCE, 1992, 118(1): 51–71.
    [2] CHU J, LEONG W K. Pre-failure strain softening and prefailure instability of sand: a comparative study[J]. Géotechnique, 2001, 51(4): 311–321.
    [3] WANATOWSKI D, CHU J. Factors affecting pre-failure instability of sand under plane-strain conditions[J]. Géotechnique, 2012, 62(2): 121–135
    [4] HAN C H, VARDOULAKIS I. Plane strain compression experiments on water-saturated fine-grained sand[J]. Géotechnique, 1991, 41(1): 49–78.
    [5] CHU J, LUO S C R, LEE I K. Strain softening and shear band formation of sand in multi-axial testing[J]. Géotechnique, 1996, 46(1): 63–82.
    [6] ALSHIBLI K A, STURE L S. Shear band formation in plane strain experiments of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2000, 126(6): 495– 503.
    [7] LADE P V, WANG Q. Analysis of shear banding in true triaxial tests on sand[J]. Journal of Engineering Mechanics, ASCE, 2001, 127(8): 762–768.
    [8] RUDNICKI J W, RICE J R. Conditions for the localization of the deformation in pressure sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids 1975, 23(6): 371–394.
    [9] RICE J R. The localization of plastic deformation[C]// Proceeding of 14th International Congress on Theoretical and Applied Mechanics. Delft, 1976: 371–394.
    [10] VARDOULAKIS I. Rigid granular plasticity model and bifurcation in the triaxial test[J]. Acta Mechanica, 1983, 49(1/2): 57–79.
    [11] CHAU K T. Non-normality and bifurcation in a compressible pressure-sensitive circular cylinder under axisymmetric tesion and compression[J]. International Journal of Solid and Structures, 1992, 29(7): 801–824.
    [12] PERI? D, RUNESSON K, STURE S. Evaluation of plastic bifurcation for plane strain versus axisymmetry[J]. Journal of Engineering Mechanics, ASCE 1992, 118: 512–524.
    [13] 孙德安, 陈立文. 不同应力路径下超固结黏土分叉分析[J]. 岩土工程学报, 2011, 33(9): 646–651. (SUN De-an, CHEN Li-wen. Bifurcation analysis of over-consolidated clays under different stress paths[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 646–651. (in Chinese))
    [14] 吕玺琳, 黄茂松, 钱建固. 基于非共轴本构模型的砂土真 三轴试验分叉分析[J]. 岩土工程学报, 2008, 30(5): 646– 651. (Lü Xi-lin, HUANG Mao-song, QIAN Jian-gu. Bifurcation analysis in true traxial tests on sands based on non-coaxial elasto-plasticity model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 646- 651. (in Chinese))
    [15] WAN R, PINHEIRO M, DAOUADJI A, et al. Diffuse instabilities with transition to localization in loose granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(10): 1292– 1311.
    [16] LADE P V. Instability and liquefaction of granular materials[J]. Computers and Geotechnics, 1994, 16(22): 123-150.
    [17] BORJA R I. Condition for liquefaction instability in fluid saturated granular soils[J]. Acta Geotechnica, 2006, 1(4): 211-224.
    [18] ANDRADE J E. A predictive framework for liquefaction instability[J]. Géotechnique, 2009, 59(8): 673–682.
    [19] JEFFERIES M G. Nor-sand: a simple critical state for sand[J]. Géotechnique, 1993, 43(1): 91–103.
    [20] 吕玺琳, 赖海波, 黄茂松. 饱和土体静态液化失稳理论预测[J]. 岩土力学, 2014, 35(5): 1330–1333, 1339. (Lü Xi-lin, LAI Hai-bo, HUANG Mao-song. Theoretically predicting instability of static liquefaction of saturated soils[J]. Rock and Soil Mechanics, 2014, 35(5): 1330–1333, 1339. (in Chinese))
    [21] FOURIE A B, TSHABALALA L. Initiation of static liquefaction and the role of K0 consolidation[J]. Canadian Geotechnical Journal, 2005, 42(3): 892–906.
    [22] 黄茂松, 扈 萍, 钱建固. 基于材料状态相关砂土临界状态理论的应变局部化分析[J]. 岩土工程学报, 2008, 30(8): 1133–1139. (HUANG Mao-song, HU Ping, QIAN Jian-gu. Strain localization of sand based on a state-dependent critical state model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1133–1139. (in Chinese))
    [23] PIETRUSZCZAK S, STOLLE F E. Deformation of strain softening material: Part II modelling of strain softening response[J]. Computers and Geotechnics, 1987, 4(2): 109– 123.
    [24] PAPAMICHOS E, VARDOULAKIS I. Shear band formation in sand according to non-coaxial plasticity model[J]. Géotechnique, 1995, 45(4): 649–661.
    [25] HUANG M S, LU X L, QIAN J G. Non-coaxial elasto-plasticity model and bifurcation prediction of shear banding in sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(9): 906– 919.
    [26] YANG Y M, YU H S. A non-coaxial critical state soil model and its application to simple shear simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(13): 1369–1390.
    [27] 杨蕴明, 柴华友, 韦昌富. 非共轴本构模型的数值计算问题[J]. 岩土力学 2010, 31(增刊2): 373-377. (YANG Yun-ming, CHAI Hua-you, WEI Chang-fu. Numerical implementation of a yield vertex non-coaxial model[J].Rock and Soil Mechanics, 2010, 31(S2): 373–377. (in Chinese))
    [28] CHU J, WANATOWSKI D. Instability conditions of loose sand in plane strain[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2008, 134(1): 136– 142.
    [29] CHU J, LEROUEIL S, LEONG W K. Unstable behaviour of sand and its implication for slope instability[J]. Canadian Geotechnical Journal, 2003, 40: 873–885.
    [30] FINNO R J, HARRIS W W, MOONEY M A, et al. Shear bands in plane strain compression of loose sand[J]. Géotechnique, 1997, 47(1): 149–165.
  • 期刊类型引用(19)

    1. 洪嘉伟,张彬,潘道明. 隧道注浆圈渗透系数对邻侧隧道的影响. 交通科技与管理. 2025(01): 147-151 . 百度学术
    2. 袁立刚,冷伍明,姜涌,朱铁环,安永林,岳健. 降雨对江底凹形纵坡隧道排水池区段的影响及排水报警方法. 铁道科学与工程学报. 2025(03): 1369-1382 . 百度学术
    3. 陈云娟,王乐宁,周宗青,贾润枝,杨卓,罗平利,刘梦悦. 基于海底隧道衬砌孔隙水压力的涌水量预测方法及工程应用. 应用基础与工程科学学报. 2024(01): 288-300 . 百度学术
    4. 韩智铭,闫科宇,王雪,朱正国,崔会敏. 有限地层三孔并行海底隧道渗流场解析研究. 铁道工程学报. 2024(01): 45-52 . 百度学术
    5. 汤钰,王华宁,宋飞. 渗透各向异性地层中隧洞稳态渗流场的半解析预测模型. 力学季刊. 2024(02): 473-482 . 百度学术
    6. 韩智铭,闫科宇,崔会敏,刘庆宽. 基于等效面积法的三孔并行海底隧道渗流场解析研究. 工程力学. 2024(S1): 112-116+149 . 百度学术
    7. 高启程,姜启武,陈志杰,赖鹏安. 考虑损伤效应的隧道二维渗流场解析及涌水量预测. 人民长江. 2024(10): 197-204+211 . 百度学术
    8. 李航达,杨广鹏,韩智铭. 多洞并行海底隧道最佳覆岩厚度变化规律研究. 石家庄铁道大学学报(自然科学版). 2024(03): 40-46 . 百度学术
    9. 卢玉东,国金琦,程大伟,毛兴隆. 考虑固液二相互态特性的流固耦合模型. 中国公路学报. 2023(01): 58-69 . 百度学术
    10. 张兵海,崔炜,张石磊,杜三林,邓检强,刘毅,朱银邦. 临近水库的隧洞二维渗流场解析解及工程应用研究. 水利水电技术(中英文). 2023(03): 126-134 . 百度学术
    11. 马少坤,陈彩洁,段智博,刘莹. 基于镜像法的有限含水层内隧道渗流场解析解及其验证. 工程力学. 2023(05): 172-181 . 百度学术
    12. 胡红星. 富水破碎带地层TBM隧道围岩稳定性研究. 科技与创新. 2023(17): 39-44 . 百度学术
    13. 乔彤,周建,张天骄,蒋熠诚. 考虑渗透各向异性的水下非圆形隧道渗流场解析. 工程科学与技术. 2023(05): 109-117 . 百度学术
    14. 徐锋. 隧道穿越富水断层多场耦合特征分析及施工控制技术. 铁道建筑技术. 2022(05): 148-152 . 百度学术
    15. 金波,胡明,方棋洪. 考虑渗流效应的深埋海底隧道围岩与衬砌结构应力场研究. 力学学报. 2022(05): 1322-1330 . 百度学术
    16. 郑培超,闫科宇,王雪,韩智铭. 海底隧道三孔并行渗流场泄压规律研究. 现代隧道技术. 2022(S1): 353-362 . 百度学术
    17. 王昊,刘广,王静峰,张兴其,浦玉炳,严中,丁兆东. 少荃湖湖底隧道工程渗流场特性分析. 人民珠江. 2021(10): 63-67 . 百度学术
    18. 李沣展,岳健,安永林,孙超杰,谭仁华. 河底浅埋小净距隧道施工期渗流性状分析. 湖南科技大学学报(自然科学版). 2021(04): 47-54 . 百度学术
    19. 叶亮,丁文其,张清照. 地下水对岩石隧道衬砌作用计算方法的探讨. 现代隧道技术. 2021(S1): 326-335 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 32
出版历程
  • 收稿日期:  2014-08-20
  • 发布日期:  2015-06-18

目录

    /

    返回文章
    返回