• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于Hansbo渗流的理想砂井地基固结分析

刘忠玉, 焦阳

刘忠玉, 焦阳. 基于Hansbo渗流的理想砂井地基固结分析[J]. 岩土工程学报, 2015, 37(5): 792-801. DOI: 10.11779/CJGE201505004
引用本文: 刘忠玉, 焦阳. 基于Hansbo渗流的理想砂井地基固结分析[J]. 岩土工程学报, 2015, 37(5): 792-801. DOI: 10.11779/CJGE201505004
LIU Zhong-yu, JIAO Yang. Consolidation of ground with ideal sand drains based on Hansbo's flow[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 792-801. DOI: 10.11779/CJGE201505004
Citation: LIU Zhong-yu, JIAO Yang. Consolidation of ground with ideal sand drains based on Hansbo's flow[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 792-801. DOI: 10.11779/CJGE201505004

基于Hansbo渗流的理想砂井地基固结分析  English Version

基金项目: 河南省教育厅自然科学研究计划项目(2010B560015)
详细信息
    作者简介:

    刘忠玉(1968- ),男,博士,教授,主要研究方向为软土固结理论与数值计算。E-mail: zhyliu@zzu.edu.cn。

  • 中图分类号: TU431

Consolidation of ground with ideal sand drains based on Hansbo's flow

  • 摘要: 室内试验和现场观测表明,许多饱和黏性土中的渗流在小水力梯度时不能用Darcy定律描述,这应该是导致基于Darcy渗流的传统砂井固结理论有时不能很好地解释某些砂井地基固结特性的原因。引入同时考虑低速渗流幂函数曲线段和较高速渗流直线段的Hansbo渗流方程描述非Darcy渗流,在自由竖向应变假定下修正了Barron的理想砂井地基固结方程,并给出了有限差分法数值求解格式。据此探讨了Hansbo渗流参数、地基厚度等对砂井地基固结进程的影响。计算结果表明:和Darcy渗流相比,Hansbo渗流延缓了砂井地基内的孔压消散速度,导致固结速度变慢,并且径向排水对孔压消散的作用会更显著。如将Hansbo渗流方程简化为幂函数形式,则往往会高估砂井地基的固结程度,特别是在固结的初期。最后对比了自由竖向应变假定和等竖向应变假定对计算结果的影响。
    Abstract: A deviation of the pore water flow from the Darcian law is observed at small hydraulic gradients according to laboratory and field investigations on some saturated cohesive soils, which can account for that there are aspects of consolidation behaviour of ground with vertical drain system that cannot sometimes be explained on the basis of these conventional consolidation theories using the Darcian flow. In order to improve the computational accuracy of consolidation of vertical drains, the Hansbo’s equation, described by the power function for lower seepage velocity and the linear function for higher seepage velocity, is introduced to describe the non-Darcian flow. Accordingly, the Barron’s consolidation theory for clayey ground with vertical ideal sand drains is modified under the assumption that the vertical strains develop freely, and the numerical analysis is performed using the finite difference method. Then the effects of the parameters of Hansbo’s flow and the ground thickness on the consolidation process of ground with vertical drains are investigated. The numerical results indicate that, compared with that of the Darcian flow, the behaviour of Hansbo's flow controls the dissipation of pore water pressure in clay ground, and thereby reduces the settlement rate of ground. In addition, the influence of radial drainage considering the Hansbo’s flow has more influence on the dissipation of pore water pressure than that considering the Darcian flow. If the Hansbo’s equation is simplified as the power function to describe the flow, the degree of consolidation of ground will be overestimated, especially in the preliminary stage of consolidation. Finally, the difference as regards the degree of consolidation obtained by assuming the equal strain theory or by assuming the free strain theory is investigated.
  • [1] BARRON R A. Consolidation of fine-grained soils by drain wells[J]. Transactions of the American Society of Civil Engineerings, 1948, 113: 718-742.
    [2] HART E G, KONDNER R L, BOYER W C. Analysis for partially penetrating sand drains[J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1958, 84(4): 1-15.
    [3] YOSHIKUNI H, NAKANADO H. Consolidation of fine-grained soils by drain well with finite permeability[J]. Soils and Foundations, 1974, 14(2): 35-46.
    [4] HANSBO S, JAMIOLKOWSKI M, KOK L.Consolidation by vertical drains[J]. Géotechnique, 1981, 31(1): 45-66.
    [5] 谢康和, 曾国熙. 等应变条件下的砂井地基固结解析理论[J]. 岩土工程学报, 1989, 11(2): 3-17. (XIE Kang-he, ZENG Guo-xi. Consolidation theories for drain wells under equal strain condition[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(2): 3-17. (in Chinese))
    [6] TANG X W. A Study for consolidation of ground with vertical drain system [D]. Saga: Saga University, 1998.
    [7] TANG X W, ONITSUKA K. Consolidation of ground with partially penetrated vertical drains[J]. Geotechnical Engineering Journal, 1998, 29(2): 209-231.
    [8] LEKHA K R, KRISHNASWAMY N R, BASAK P. Consolidation of clay by sand drain under time-dependent loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(1): 91-94.
    [9] TANG X W, ONITSUKA K. Consolidation of double-layered ground with vertical drains[J]. International Journal for Numerical Analytical Methods in Geomechanics, 2001, 25: 1449-1465.
    [10] HAWLADER B C, IMAI G, MUHUNTHAN B. Numerical study of the factors affecting the consolidation of clay with vertical drains[J]. Geotextiles and Geomembranes, 2002, 20(4): 213-239.
    [11] 刘加才, 施建勇, 赵维炳, 等. 变荷载作用下未打穿竖井地基固结分析[J]. 岩石力学与工程学报, 2005, 24(6): 1041-1046. (LIU Jia-cai, SHI Jian-yong, ZHAO Wei-bing, et al. Consolidation of ground with partially penetrated vertical drains under time-dependent loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(6): 1041-1046. (in Chinese))
    [12] 闫富有. 成层未打穿砂井地基固结Lagrange 插值解法[J].岩石力学与工程学报, 2007, 26(9): 1932-1939. (YAN Fu-you. Lagrange interpolation for multi-layer ground in consolidation of partially penetrated vertical drains[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1932-1939. (in Chinese))
    [13] GENG X Y, INDRARATNA B, RUJIKIATKAMJORN C. Effectiveness of partially penetrating vertical drains under a combined surcharge and vacuum preloading[J]. Canadian Geotechnical Journal, 2011, 48(6): 970-983.
    [14] HANSBO S. Consolidation of clay, with special reference to influence of vertical sand drains[D]. Stockholm: Swedish Geotechnical Institute, 1960.
    [15] DUBIN B, MOULIN G. Influence of a critical gradient on theconsolidation of clays[C]// Consolidation of Soils: Testing and Evaluation (STP 892), ASTM, 1985: 354-377.
    [16] 齐添, 谢康和, 胡安峰, 等. 萧山黏土非达西渗流性状的试验研究[J]. 浙江大学学报(自然科学版), 2007, 41(6): 1023-1028. (QI Tian, XIE Kang-he, HU An-feng, et al. Laboratorial study on non-Darcy seepage in Xiaoshan clay[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(6): 1023-1028. (in Chinese))
    [17] 孙丽云, 乐金朝, 张杰. 饱和黏土非达西渗透特性试验研究[J]. 郑州大学学报(工学版), 2010, 31(6): 31-34. (SUN Li-yun, YUE Jin-chao, ZHANG Jie. Experimental study on non-Darcy permeability characteristics of saturated clays[J]. Journal of Zhengzhou University (Engineering Science), 2010, 31(6): 31-34. (in Chinese))
    [18] 刘忠玉, 张天航, 马崇武. 起始水力梯度对饱和黏土一维固结的影响[J]. 岩土力学, 2007, 28(3): 467-470. (LIU Zhong-yu, ZHANG Tian-hang, MA Chong-wu. Effect of initial hydraulic gradient on one-dimensional consolidation of saturated clays[J]. Rock and Soil Mechanics, 2007, 28(3): 467-470. (in Chinese))
    [19] 谢海澜, 武强, 赵增敏, 等. 考虑非达西流的弱透水层固结计算[J]. 岩土力学, 2007, 28(5): 1061-1065. (XIE Hai-lan, WU Qiang, ZHAO Zeng-min, et al. Consolidation computation of aquitard considering non-Darcy flow[J]. Rock and Soil Mechanics, 2007, 28(5): 1061-1065. (in Chinese))
    [20] 刘忠玉, 孙丽云, 乐金朝, 等. 基于非Darcy渗流的饱和黏土一维固结理论[J]. 岩石力学与工程学报, 2009, 28(5): 973-979. (LIU Zhong-yu, SUN Li-yun, YUE Jin-chao, et al. One-dimensional consolidation theory of saturated clay based on non-Darcy flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 973-979. (in Chinese))
    [21] 鄂建, 陈刚, 孙爱荣. 考虑低速非Darcy渗流的饱和黏性土一维固结分析[J]. 岩土工程学报, 2009, 31(7): 1115-1119. (E Jian, CHEN Gang, SUN Ai-rong. One-dimensional consolidation of saturated cohesive soil considering non-Darcy flows[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1115-1119. (in Chinese))
    [22] 刘忠玉, 纠永志, 乐金朝, 等. 基于非Darcy渗流的饱和黏土一维非线性固结分析[J]. 岩石力学与工程学报, 2010, 29(11): 2348-2355. (LIU Zhong-yu, JIU Yong-zhi, YUE Jin-chao, et al. One-dimensional nonlinear consolidation analysis of saturated clay based on non-Darcy flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11): 2348-2355. (in Chinese))
    [23] 李传勋, 谢康和, 王坤, 等. 基于指数形式渗流定律的软土一维固结分析[J]. 土木工程学报, 2011, 44(8): 111-117. (LI Chuan-xun, XIE Kang-he, WANG Kun, et al. One-dimensional consolidation analysis considering exponential flow law for soft clays[J]. Chinese Civil Engineering Journal, 2011, 44(8): 111-117. (in Chinese))
    [24] 纠永志, 刘忠玉, 乐金朝, 等. 考虑非Darcy渗流和自重应力的一维固结分析[J]. 同济大学学报(自然科学版), 2012, 40(4): 541-548. (JIU Yong-zhi, LIU Zhong-yu, YUE Jin-chao, et al. One-dimensional consolidation with a consideration of non-Darcy flow and self-gravity stress[J]. Journal of Tongji University (Natural Science), 2012, 40(4): 541-548. (in Chinese))
    [25] 刘忠玉, 闫富有, 王喜军. 基于非达西渗流的饱和黏土一维流变固结分析[J]. 岩石力学与工程学报, 2013, 32(9): 1937-1944. (LIU Zhong-yu, YAN Fu-you, WANG Xi-jun. One-dimensional rheological consolidation analysis of saturated clay considering on non-Darcy flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1937-1944. (in Chinese))
    [26] HANSBO S. Aspects of vertical drain design: Darcian or non-Darcian flow[J]. Géotechnique, 1997, 47(5): 983-992.
    [27] HANSBO S. Consolidation equation valid for both Darcian and non-Darcian flow[J]. Géotechnique, 2001, 51(1): 51-54.
    [28] TEH C I, NIE X Y. Coupled consolidation theory with non-Darcian flow[J]. Computers and Geotechnics, 2002, 29(3): 169-209.
    [29] 周琦, 邓志勇, 王友元, 等. 起始水力梯度对真空预压下砂井地基固结过程的影响[J]. 土木建筑与环境工程, 2010, 32(2): 46-52. (ZHOU Qi, DENG Zhi-yong, WANG You-yuan, et al. Effect of initial hydraulic gradient on consolidation of sand-drained ground improved by vacuum preloading[J]. Journal of Civil, Architectural & Environmental Engineering, 2010, 32(2): 46-52. (in Chinese))
    [30] 邓岳保, 谢康和, 李传勋. 考虑非达西渗流的比奥固结有限元分析[J]. 岩土工程学报, 2012, 34(11): 2058-2065. (DENG Yue-bao, XIE Kang-he, LI Chuan-xun. Finite element analysis of Biot’s consolidation with non-Darcian flow[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2058-2065. (in Chinese))
    [31] 孙志忠. 偏微分方程数值解法[M]. 北京: 科学出版社, 2005. (SUN Zhi-zhong. Numerical methods for partial differential equations[M]. Beijing: Science Press, 2005. (in Chinese))
  • 期刊类型引用(7)

    1. 刘志,杨阳. 黄原胶联合微生物加固改善混合砂蓄水特性试验研究. 土木与环境工程学报(中英文). 2025(03): 49-57 . 百度学术
    2. 梁越,冉裕星,许彬,张鑫强,何慧汝. 细颗粒含量影响渗流侵蚀规律的细观机理研究. 岩土工程学报. 2025(05): 1099-1106 . 本站查看
    3. 高霞,梅雯艳,吴强,崔祥龙. 球度和扁平度对含瓦斯水合物煤体宏细观力学性质影响研究. 中国安全生产科学技术. 2025(05): 86-94 . 百度学术
    4. 蔡国庆,刁显锋,杨芮,王北辰,高帅,刘韬. 基于CFD-DEM的流-固耦合数值建模方法研究进展. 哈尔滨工业大学学报. 2024(01): 17-32 . 百度学术
    5. 程建毅,郭晓军,李泳. 泥石流物源土体标度分布参数与粘聚力的关系. 山地学报. 2024(03): 401-410 . 百度学术
    6. 孙增春,刘汉龙,肖杨. 砂-粉混合料的分数阶塑性本构模型. 岩土工程学报. 2024(08): 1596-1604 . 本站查看
    7. 孙建强. 颗粒形状对黄土干密度与抗剪强度的影响. 黑龙江工程学院学报. 2024(06): 8-15+23 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 12
出版历程
  • 收稿日期:  2014-08-13
  • 发布日期:  2015-05-19

目录

    /

    返回文章
    返回