Application of spectrum inversion method in GPR signal processing for tunnel lining detection
-
摘要: 隧道衬砌模型的空间结构属于典型的层状分布,采用探地雷达进行隧道二衬检测时,往往很难识别高度小于调谐厚度的脱空。通过建立含有脱空薄层的隧道二衬层状几何模型,结合电磁波在隧道衬砌中的传播规律,给出了隧道衬砌检测时电磁波的反射模型,并推导了其广义反射系数谱域表达式,从而提出一种根据反射系数序列频谱估算隧道二衬厚度及脱空高度的反演方法。通过分析反射系数序列的幅度谱属性,进一步提出一种估计脱空层高度的快速方法,即根据幅度谱凹陷周期确定脱空层双程走时,进而估算脱空层高度。最后,利用1stOpt数学优化分析软件进行全局优化,并反演求解各参数。物理模型实验及现场应用实例的处理结果表明,当脱空厚度小于1/4波长时,本文所述的频谱反演法仍能准确反演出二衬厚度及脱空层高度,从而提高了探地雷达资料的垂直分辨率。Abstract: The spatial structure of tunnel lining model is a typical stratiform distribution, so it is difficult to identify the void area if its height is less than tuning thickness when using ground penetrating radar (GPR) to detect the second lining of tunnel. In this paper, by establishing a geometrical model for the second lining layer of tunnel including void area and considering the spreading law of electromagnetic waves in tunnel lining, a reflection model for electromagnetic waves in tunnel lining detection is obtained, and the generalized reflection coefficient in spectrum expression is deduced as well as an inversion method to further estimate the lining thickness of tunnel and the height of void area according to the reflection coefficient sequence spectrum. By analyzing the amplitude spectrum properties of the reflection coefficient sequence, a quick method to estimate the height of void area is proposed, namely determining the two-way travel time of void area and leading to the height of void area according to the depressing period of the amplitude spectra. Finally, 1stopt mathematical optimization analysis software is adopted for the global optimization and calculation of parameters. The results of physical model experiments and field tests indicate that the spectrum inversion method can also estimate the lining thickness of tunnel and the height of void area accurately when the height of void area is less than 1/4 wavelength, consequently enhancing the vertical resolution of GPR data.
-
[1] 李晋平, 邵丕彦, 谷牧. 地质雷达在铁路隧道工程质量检测中的应用[J]. 中国铁道科学, 2006, 27(2): 56-59. (LI Jin-ping, SHAO Pi-yan, GU Mu. Application and analysis of GPR in railway tunnel engineering quality inspection[J]. China Railway Science, 2006, 27(2): 56-59. (in Chinese)) [2] 郭有劲. 地质雷达在铁路隧道衬砌质量检测中的应用[J]. 铁道工程学报, 2002, 74(2): 71-74. (GUO You-jin. Exploration and application of geology radar for quality examination of railway tunnel lining[J]. Journal of Railway Engineering Society, 2002, 74(2): 71-74. (in Chinese)) [3] SIGGINS A F, WHITELY R J A. Laboratory simulation of high frequency GPR responses of damaged tunnel liners[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 40(11): 805-811. [4] BUNGEY J H, MILLARD S G, SHAW M R. Influence of reinforcing steel on radar surveys of concrete structures[J]. Construction and Building Materials, 1994, 8(2): 119-126. [5] 杨艳青, 贺少辉, 齐法琳, 等. 铁路隧道复合式衬砌地质雷达检测模拟试验研究[J]. 岩土工程学报, 2012, 34(6): 1159-1165. (YANG Yan-qing, HE Shao-hui, QI Fa-lin, et al. Simulation tests on GPR detection of composite linings of railway tunnels[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1159-1165. (in Chinese)) [6] 刘新荣, 舒志乐, 朱成红, 等. 隧道衬砌空洞探地雷达三维探测正演研究[J]. 岩石力学与工程学报, 2010, 29(11): 2221-2229. (LIU Xin-rong, SHU Zhi-le, ZHU Cheng-hong, et al. Study of forward simulation for ground penetrating radar three-dimensional detection of tunnel lining cavity[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11): 2221-2229. (in Chinese) ) [7] 杨峰, 彭苏萍, 刘杰, 等. 衬砌脱空雷达波数值模拟与定量解释[J]. 铁道学报, 2008, 30(5): 92-96. (YANG Feng, PENG Su-ping, LIU Jie, et al. Simulation of lining void area by radar waves and explanatory strategy[J]. Journal of the China Railway Society, 2008, 30(5): 92-96. (in Chinese)) [8] HUANG C L, SU Y. A new GPR calibration method for high accuracy thickness and permittivity measurement of multi-layered pavement[C]// Proceedings of the Tenth International Conference on Ground Penetrating Radar. Delft, IEEE, 2004: 627-630 [9] WIDESS M B. How thin is a thin bed[J]. Geophysics, 1973, 38(6): 1176-1180. [10] 张蓓. 路面结构层材料介电特性及其厚度反演分析的系统识别方法:路面雷达关键技术研究[D]. 重庆: 重庆大学, 2003. (ZHANG Bei. System identification method for conversion analysis of dielectric characteristics and thickness of pavement structure: research of the key techniques of pavement radar[D]. Chongqing: Chongqing University, 2003. (in Chinese)) [11] PURYEAR C I, CASTAGNA J P. Layer-thickness determination and stratigraphic interpretation using spectral inversion: Theory and application[J]. Geophysics, 2008, 73(2): 37-48. [12] 黄忠来, 张建中. 利用探地雷达频谱反演层状介质几何与电性参数[J]. 地球物理学报, 2013, 54(4): 1381-1391. (HUANG Zhong-lai, ZHANG Jian-zhong. An inversion method for geometric and electric parameters of layered media using spectrum of GPR signal[J]. Chinese Journal of Geophysics, 2013, 54(4): 1381-1391. (in Chinese)) [13] 秦瑶, 陈洁, 方广有. 频谱拟合法提高探地雷达垂直分辨率[J]. 仪器仪表学报, 2010, 31(7): 1148-1453. (QIN Yao, CHEN Jie, FANG Guang-you. Spectrum fitting method for improving the vertical resolution of ground penetrating radar[J]. Chinese Journal of Scientific Instrument, 2010, 31(7): 1148-1453. (in Chinese)) [14] JOL H M. Ground penetrating radar: theory and applications[M]. Amsterdam: Elsevier Science 2009. [15] WENG CH CH. Waves and fields in inhomogeneous media[M]. New York: Wiley-IEEE Press, 1990: 37-65. [16] 柴新涛, 韩文功, 李振春, 等. 基于LSQR算法的谱反演方法研究[J]. 石油物探, 2012, 51(1): 11-18. (CHAI Xin-tao, HAN Wen-gong, LI Zheng-chun, et al. Spectrum inversion method analysis based on the LSQR algorithm[J]. Geophysical Prospecting for Petroleum, 2012, 51(1): 11-18. (in Chinese)) [17] LOIZOS A, PLATI C. Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches[J]. NDT&E International, 2007, 40: 147-157. -
期刊类型引用(27)
1. 冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 . 百度学术
2. 胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 . 百度学术
3. 唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 . 百度学术
4. 刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 . 百度学术
5. 喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 . 百度学术
6. 张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 . 本站查看
7. 刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 . 百度学术
8. 程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 . 百度学术
9. 刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 . 百度学术
10. 张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 . 百度学术
11. 薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 . 本站查看
12. 刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 . 百度学术
13. 刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 . 百度学术
14. 方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 . 百度学术
15. 蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 . 百度学术
16. 赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 . 本站查看
17. 马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 . 百度学术
18. 刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 . 百度学术
19. 马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 . 百度学术
20. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 . 百度学术
21. 关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 . 百度学术
22. 孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 . 百度学术
23. 邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 . 百度学术
24. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 . 百度学术
25. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 . 百度学术
26. 张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 . 本站查看
27. 陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 . 百度学术
其他类型引用(47)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 74