Bearing capacity of piles in optimized design of pile foundation stiffness to reduce differential settlement
-
摘要: 桩基变刚度调平设计的框筒结构体系大比尺模型试验和实际工程桩顶反力测试结果均显示工作荷载作用下,核心筒不同区位桩顶反力随荷载水平的提高而增加,核心筒外围框架柱下桩顶反力也与核心筒下桩顶反力一样趋于均匀。可见,变刚度调平设计可调整反力分布,改善筏板的受力性状。模型试验中核心筒桩顶反力提高的比率是角桩最大、边桩次之、中心桩最小,角桩、边桩、中心桩反力与平均值的比值为:1.15∶1.02∶0.83。工程实测中外框架角桩下桩反力>外框架边柱下桩反力>核心筒下桩反力。这主要由于群桩效应引起的桩基竖向支撑刚度弱化,外框架柱下角桩处桩数少,群桩效应影响较弱。Abstract: The measured results of forces at pile top of tube frame structural system and large-scale model tests by applying the optimized design of pile foundation stiffness to reduce differential settlement show that the forces at pile top in different tube areas increase with the increase of loading level, and those under the tube and peripheral frame columns tend to be uniform under the working loads. The optimized design of pile foundation stiffness to reduce differential settlement can adjust distribution of forces and improve stress behavior of rafts. In model tests, the improvement ratio for tubes is in the decreasing order of angle pile, side pile and center pile. The corresponding pile butt force ratio of the forces to mean values is 1.15∶1.02∶0.83. The measured pile forces are in the decreasing order of peripheral frame columns, peripheral frame edge columns and piles under the tube. This is mainly due to the weakening of support stiffness caused by the vertical pile group effect. The pile group effect is weaker due to the fewer number of piles under the peripheral frame columns and angle piles.
-
[1] 王涛. 带裙房高层建筑桩基优化设计与桩土相互作用影响系数试验研究[D]. 北京: 中国建筑科学研究院, 2007. (WANG Tao. Experimental study on pile foundation optimum design of hise-rise buildings with podium and pile soil interaction influencc coefficient[D]. Beijing: China Academy of Building Research, 2007. (in Chinese)) [2] 刘金砺, 迟铃泉, 张武, 等. 高层建筑地基基础变刚度调平设计方法与处理技术[R]. 北京: 中国建筑科学研究院, 2008. (LIU Jin-li, CHI Ling-quan, ZHANG Wu, et al. The study on hise-rise building optimized design method and treatment technology of foundation stiffness to reduce differential settlement[R]. Beijing: China Academy of Building Research, 2008. (in Chinese)) [3] JGJ94—2008 建筑桩基技术规范[S]. 北京: 中国建筑工业出版社, 2008. (JGJ94—2008 Technical code for building pile foundation[S]. Beijing: China Architecture and Building Press, 2008. (in Chinese)) [4] 赵锡宏. 上海高层桩筏与桩箱基础设计理论[M]. 上海: 同济大学出版社, 1989. (ZHAO Xin-hong. Pile raft foundation and pile box foundation design theory in Shanghai[M]. Shanghai: Tongji University Press, 1989. (in Chinese)) [5] 刘金砺. 高层建筑地基基础变刚度调平设计方法与处理技术[R]. 北京: 中国建筑科学研究院, 2008. (LIU Jin-li. The study on hise-rise building optimized design method and treatment technology of foundation stiffness to reduce differential settlement[R]. Beijing: China Academy of Building Research, 2008. (in Chinese)) -
期刊类型引用(4)
1. 刘学增,房茂柳,吴德兴,李银萍,刘新根,李罡. 隧道结构病害快速检测技术的现状与发展. 隧道建设(中英文). 2025(04): 657-676 . 百度学术
2. 李文博. 公路隧道无损检测技术与病害处理方法分析. 交通科技与管理. 2024(07): 79-81 . 百度学术
3. 路德春,秦威,郭彩霞,李久林,杜修力. gprMax干扰消除方法优化隧道壁后空洞成像特征研究. 隧道建设(中英文). 2024(10): 1928-1940 . 百度学术
4. 朱厚喜,曹伍富,李克飞,伊建峰,刘少华,李洪珏. 基于多模态特征融合的隧道渗水异常检测方法. 计算机应用. 2023(S2): 276-284 . 百度学术
其他类型引用(0)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 4