• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

压缩过程中非饱和膨胀土体变特征与持水特性的水力耦合效应

周葆春, 孔令伟, 梁维云, 马全国, 张斌

周葆春, 孔令伟, 梁维云, 马全国, 张斌. 压缩过程中非饱和膨胀土体变特征与持水特性的水力耦合效应[J]. 岩土工程学报, 2015, 37(4): 629-640. DOI: 10.11779/CJGE201504008
引用本文: 周葆春, 孔令伟, 梁维云, 马全国, 张斌. 压缩过程中非饱和膨胀土体变特征与持水特性的水力耦合效应[J]. 岩土工程学报, 2015, 37(4): 629-640. DOI: 10.11779/CJGE201504008
ZHOU Bao-chun, KONG Ling-wei, LIANG Wei-yun, MA Quan-guo, ZHANG Bin. Hydro-mechanical coupling effects on volume change and water retention behaviour of unsaturated expansive soils during compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 629-640. DOI: 10.11779/CJGE201504008
Citation: ZHOU Bao-chun, KONG Ling-wei, LIANG Wei-yun, MA Quan-guo, ZHANG Bin. Hydro-mechanical coupling effects on volume change and water retention behaviour of unsaturated expansive soils during compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 629-640. DOI: 10.11779/CJGE201504008

压缩过程中非饱和膨胀土体变特征与持水特性的水力耦合效应  English Version

基金项目: 国家自然科学基金项目(51009118); 中国博士后科学基金; 项目(20100470058)
详细信息
    作者简介:

    周葆春(1978- ),男,博士,副教授,主要从事非饱和土与特殊土力学性质与本构模拟方面的研究工作。E-mail: zhoubc@xynu.edu.cn。

Hydro-mechanical coupling effects on volume change and water retention behaviour of unsaturated expansive soils during compression

  • 摘要: 土体压缩是岩土工程领域的基本问题。压缩过程中非饱和土的力学与水力学行为是同时发生且相互影响的,有必要统一考察体变特征与持水特性的水力耦合效应。为此,以荆门弱膨胀土为研究对象,开展土中水密度试验、饱和与控制吸力下的非饱和一维压缩试验,准确测量了压缩与卸荷回弹过程中孔隙比-重力含水率-吸力-竖向净应力关系,探讨了水力耦合状况下非饱和膨胀土的体变特征与持水特性规律,并建立相应本构描述。结论如下:①加载段,非饱和压缩曲线均发生明显转折,体现出屈服行为;随吸力增大,压缩曲线依次发生“穿越”现象;卸载段大体呈线性,其斜率随吸力增大而降低。提出能够描述干缩、压缩、卸荷体胀、屈服、压缩性与卸荷回弹性随吸力变化等行为的非饱和土体变方程,可直接用于分层总和法计算。②不同吸力下重力含水率变化存在较大差异;压缩至2941.8 kPa时,不同吸力下含水率非常接近。吸力与竖向净应力对含水率变化的耦合影响可用3参数Logistic函数描述。③压缩过程中饱和度随竖向净应力增大而增大,卸荷过程中随竖向净应力降低亦增大。采用饱和度或重力含水率,对压缩过程中的水力路径会出现“湿化”与“脱湿”的不同判断,即水力耦合状况下土体表现出复杂的持水状态变化特征。
    Abstract: During compression of unsaturated soils, the volume change and water content change interact simultaneously. The hydro-mechanical coupling effects on both of them are comprehensively investigated. For this purpose, tests on water density in soils and suction-controlled (0~1000 kPa) one-dimensional compression tests on saturated and unsaturated soils are carried out for Jingmen expansive soils. The conclusions are drawn as follows: (1) For the volume change behaviour, the yielding point can be observed on the load-compression curve, and the compression ones under higher suction intersect the curves under lower suction sequentially. The unloading curves appear to be linear, and the slopes of which decrease with the increasing suction. The volume change formula is presented, which is capable of predicting the shrinkage due to suction increase, volume compression/expansion due to loading/unloading, yielding, and the variety of compressibility due to suction change. (2) For the water retention behaviour during compression, the water content changes slightly under higher suction. When compressed to the net vertical pressure of 2941.8 kPa, the water contents under the four different suctions are similar. A three-parameter Logistic function is presented for simulating the coupling effects of suction and net vertical stress on water content. (3) The degree of saturation increases during both loading and unloading, both of which mean ‘wetting’. However, the water content decreases during loading, which means ‘drying’. The reason for this discrepancy is that the change of degree of saturation can be affected by change of the water content as well as that of void ratio.
  • [1] 殷宗泽. 土工原理[M]. 北京: 中国水利水电出版社, 2007. (YIN Zong-ze. Principle of soil mechanics[M]. Beijing: China Water Power Press, 2007. (in Chinese))
    [2] FREDLUND D G. Second Canadian geotechnical colloquium: appropriate concepts and technology for unsaturated soils[J]. Canadian Geotechnical Journal, 1979, 16(1): 121-139.
    [3] SIVAKUMAR V. A critical state framework for unsaturated soil[D]. Sheffield: University of Sheffield, 1993.
    [4] SHARMA R S. Mechanical behaviour of unsaturated highly expansive clays[D]. Oxford: University of Oxford, 1998.
    [5] CUI Y J, YAHIA-AISSA M, DELAGE P. A model for the volume change behavior of heavily compacted swelling clays[J]. Engineering Geology, 2002, 64(2/3): 233-250.
    [6] 詹良通, 吴宏伟. 非饱和膨胀土变形和强度特性的三轴试验研究[J]. 岩土工程学报, 2006, 28(2): 196-201. (ZHAN Liang-tong, NG C W W. Experimental study on mechanical behavior of recompacted unsaturated expansive clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 196-201. (in Chinese))
    [7] 汪东林, 栾茂田, 杨庆. 非饱和重塑低液限黏土体积变化特性试验研究[J]. 水利学报, 2008, 39(3): 367-372. (WANG Dong-lin, LUAN Mao-tian, YANG Qing. Experimental research on volume change of unsaturated remolded clay with low liquid-limit[J]. Journal of Hydraulic Engineering, 2008, 39(3): 367-372. (in Chinese))
    [8] SIVAKUMAR V, SIVAKUMAR R, MURRAY E J, et al. Mechanical behaviour of unsaturated kaolin (with isotropic and anisotropic stress history). Part 1: wetting and compression behaviour[J]. Géotechnique, 2010, 60(8): 581-594.
    [9] 叶为民, 朱悦铭, 陈宝, 等. 上海软土非饱和压缩特征[J]. 同济大学学报, 2011, 39(10): 1458-1462. (YE Wei-min, ZHU Yue-ming, CHEN Bao, et al. Compressibility of Shanghai unsaturated soft soil[J]. Journal of Tongji University, 2011, 39(10): 1458-1462. (in Chinese))
    [10] YE W M, ZHANG Y W, CHEN B, et al. Investigation on compression behaviour of highly compacted GMZ01 bentonite with suction and temperature control[J]. Nuclear Engineering and Design, 2012, 252: 11-18.
    [11] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272. (CHEN Zheng-han. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese))
    [12] 陈正汉. 重塑非饱和黄土的变形、强度、屈服和水量变化特性[J]. 岩土工程学报, 1999, 21(1): 82-90. (CHEN Zheng-han. Deformation, strength, yield and moisture change of a remolded unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 82-90. (in Chinese))
    [13] Ng C W W, PANG Y W. Influence of stress state on soil-water characteristics and slope stability[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000, 126(2): 157-166.
    [14] SUN D A, SHENG D C, XU Y F. Collapse behaviour of unsaturated compacted soil with different initial densities[J]. Canadian Geotechnical Journal, 2007, 44(6): 673-686.
    [15] 周葆春, 孔令伟. 考虑体积变化的非饱和膨胀土土水特征[J]. 水利学报, 2011, 42(10): 1152-1160. (ZHOU Bao-chun, KONG Ling-wei. Effect of volume changes on soil-water characteristics of unsaturated expansive soil[J]. Journal of Hydraulic Engineering, 2011, 42(10): 1152-1160. (in Chinese))
    [16] 张昭, 刘奉银, 赵旭光, 等. 考虑应力引起孔隙比变化的土水特征曲线模型[J]. 水利学报, 2013, 44(5): 578-585. (ZHANG Zhao, LIU Feng-yin, ZHAO Xu-guang, et al. A soil water characteristic curve model considering void ratio variation with stress[J]. Journal of Hydraulic Engineering, 2013, 44(5): 578-585. (in Chinese))
    [17] TARANTINO A, DE COL E. Compaction behaviour of clay[J]. Géotechnique, 2008, 58(3): 199-213.
    [18] TAIBI S, FLEUREAU J M, ABOU-BEKR N, et al. Some aspects of the behaviour of compacted soils along wetting paths[J]. Géotechnique, 2011, 61(5): 431-437.
    [19] VILLAR M V, LLORET A. Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite[J]. Applied Clay Science, 2004, 26(1/2/3/4): 337-350.
    [20] BAG R. Coupled thermo-hydro-mechanical-chemical behaviour of MX80 bentonite in geotechnical applications[D]. Cardiff: Cardiff University, 2011.
    [21] JACINTO A C, VILLAR M V, LEDESMA A. Influence of water density on the water-retention curve of expansive clays[J]. Géotechnique, 2012, 62(8): 657-667.
    [22] WANG Qiong, CUI Yu-jun, TANG Anh Minh, et al. Time- and density-dependent microstructure features of compacted bentonite[J]. Soils and Foundations, 2014, 54(4): 657-666.
    [23] ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430.
    [24] 孔令伟, 周葆春, 白颢, 等. 荆门非饱和膨胀土的变形与强度特性试验研究[J]. 岩土力学, 2010, 31(10): 3036-3042. (KONG Ling-wei, ZHOU Bao-chun, BAI Hao, et al. Experimental study of deformation and strength characteristics of Jingmen unsaturated expansive soil[J]. Rock and Soil Mechanics, 2010, 31(10): 3036-3042. (in Chinese))
    [25] 周葆春, 张彦钧, 汤致松, 等. 荆门压实弱膨胀土孔隙比-含水率-吸力特征的滞回效应[J]. 水利学报, 2013, 44(2): 164-172. (ZHOU Bao-chun, ZHANG Yan-jun, TANG Zhi-song, et al. Hydraulic hysteresis effect on void ratio-water content-suction behavior of Jingmen compacted expansive soil[J]. Journal of Hydraulic Engineering, 2013, 44(2): 164-172. (in Chinese))
    [26] SL237—1999 土工试验规程[S]. 北京: 中国水利水电出版社, 1999. (SL237—1999 Test guide of soil[S]. Beijing: China Water Power Press, 1999. (in Chinese))
    [27] PEREZ-GARCIA N, HOUSTON S L, HOUSTON W N, et al. An oedometer-type pressure plate SWCC apparatus[J]. Geotechnical Testing Journal, 2008, 31(2): 115-123.
    [28] BUTTERFIELD R. A natural compression law for soils (an advance on e -lg p ')[J]. Géotechnique, 1979, 29(4): 469-480.
    [29] FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. New York: John Wiley & Sons, Inc., 1993.
    [30] GENS A. Soil-environment interactions in geotechnical engineering[J]. Géotechnique, 2010, 60(1): 3-74.
    [31] FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.
    [32] TARANTINO A. A water retention model for deformable soils[J]. Géotechnique, 2009, 59(9): 751-762.
  • 期刊类型引用(13)

    1. 汪云飞,王海军,赵新铭,汤雷,潘建伍. 热载荷下脆性固体中三维平行内裂纹的相互作用:实验和数值模拟(英文). Journal of Central South University. 2023(01): 331-350 . 百度学术
    2. 胡南燕,黄建彬,罗斌玉,李雪雪,陈敦熙,曾子懿,付晗,娄家豪. 环氧树脂基脆性透明岩石相似材料配比试验研究. 岩土力学. 2023(12): 3471-3480 . 百度学术
    3. Jiyun Xu,Hanzhang Li,Haijun Wang,Lei Tang. Experimental study on 3D internal penny-shaped crack propagation in brittle materials under uniaxial compression. Deep Underground Science and Engineering. 2023(01): 37-51 . 必应学术
    4. Haijun Wang,Hanzhang Li,Lei Tang,Xuhua Ren,Qingxiang Meng,Chun Zhu. Fracture of two three-dimensional parallel internal cracks in brittle solid under ultrasonic fracturing. Journal of Rock Mechanics and Geotechnical Engineering. 2022(03): 757-769 . 必应学术
    5. Haijun Wang,Hanzhang Li,Lei Tang,Jianchun Li,Xuhua Ren. Fracturing behavior of brittle solids containing 3D internal crack of different depths under ultrasonic fracturing. International Journal of Mining Science and Technology. 2022(06): 1245-1257 . 必应学术
    6. 王海军,乐成军,汤雷,赵初,李汉章,戚海棠. 基于3D-ILC含水平内裂纹脆性固体三点弯断裂特性研究. 岩土力学. 2021(10): 2773-2784 . 百度学术
    7. 王海军,顾浩,任然,汤雷,郁舒阳,戚海棠. 基于3D-ILC脆性材料双共面与障碍内裂纹扩展特性. 煤炭学报. 2021(S1): 263-273 . 百度学术
    8. 张志韬,王海军,汤雷,赵初,李汉章,苏正洋. 基于3D-ILC含偏心内裂纹半圆弯拉断裂特性研究. 岩土力学. 2020(01): 111-122+131 . 百度学术
    9. 王海军,郁舒阳,李汉章,任然,汤雷,朱文炜. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究. 岩石力学与工程学报. 2020(05): 938-948 . 百度学术
    10. 王海军,郁舒阳,汤子璇,汤雷,任然,徐进. 基于3D-ILC含60°内裂纹脆性球体Ⅰ-Ⅱ-Ⅲ型断裂研究. 岩土力学. 2020(05): 1573-1582 . 百度学术
    11. 王海军,张珂,任然,汤雷,郁舒阳. 基于3D-ILC含60°平行双内裂纹脆性巴西圆盘断裂特性. 工程科学与技术. 2020(04): 184-193 . 百度学术
    12. 金爱兵,王树亮,王本鑫,孙浩,陈帅军,朱东风. 基于DIC的3D打印交叉节理试件破裂机制研究. 岩土力学. 2020(12): 3862-3872 . 百度学术
    13. 王海军,郁舒阳,任然,汤雷,李欣昀,贾宇. 基于3D-ILC含内裂纹孔口脆性固体断裂特性试验. 岩土力学. 2019(06): 2200-2212 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  666
  • HTML全文浏览量:  3
  • PDF下载量:  642
  • 被引次数: 16
出版历程
  • 收稿日期:  2014-06-08
  • 发布日期:  2015-05-05

目录

    /

    返回文章
    返回