• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

气体压力和孔隙对垃圾土体气体渗透系数影响的研究

施建勇, 赵义

施建勇, 赵义. 气体压力和孔隙对垃圾土体气体渗透系数影响的研究[J]. 岩土工程学报, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002
引用本文: 施建勇, 赵义. 气体压力和孔隙对垃圾土体气体渗透系数影响的研究[J]. 岩土工程学报, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002
SHI Jian-yong, ZHAO Yi. Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW)[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002
Citation: SHI Jian-yong, ZHAO Yi. Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW)[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002

气体压力和孔隙对垃圾土体气体渗透系数影响的研究  English Version

基金项目: 国家自然科学基金项目(41372268)
详细信息
    作者简介:

    施建勇(1965- ),男,江苏如皋人,博士,教授,主要从事环境岩土工程研究。E-mail: soft-ground@hhu.edu.cn。

Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW)

  • 摘要: 垃圾土的非饱和气体渗透系数是填埋场气体运移分析和抽气井设计的重要参数,孔隙比、有机物含量、饱和度等是影响垃圾土渗透特性的主要因素。通过研制的垃圾土非饱和渗透试验仪,进行了不同影响因素下的非饱和垃圾土气体渗透试验,发现渗透系数随渗透压力呈现非线性特性,可以用Forchheimer非达西渗流方程较好地拟合。孔隙比增加,渗透系数增大,非达西系数Ba逐渐减小,分界点的气体压力减小;有机物含量越高,渗透系数越小,分界点气体压力越大;片状分布有机物使有效连通的渗透路径减少是垃圾体气体渗透特性降低的原因;饱和度越高,垃圾土的渗透系数越小,分界点气体压力越大;在试验的有效孔隙范围内,渗透系数、分界点气体压力与有效孔隙呈现较好的相关关系、非达西系数变化不大。
    Abstract: The permeability coefficient of gas in municipal solid waste (MSW) is an important parameter for migration analysis and design of extraction well for gas in landfills. The permeability of MSW is mainly dependent on the void ratio, organic content, saturation degree and so on. In this study, the air permeability tests on unsaturated MSW are carried out under different influencing conditions by a new developed permeameter. It is found that there is a nonlinear relationship between permeability coefficient of MSW and seepage pressure of air, which can be better fitted by using the Forchheimer non-Darcy flow equation. With the increase of void ratio of MSW, the permeability coefficient increases, non-Darcy coefficient Ba decreases and the air pressure at demarcation point increases, respectively. With the increase of organic content in MSW, the permeability coefficient decreases and the air pressure at demarcation point increases, respectively. The flaky organic part will be spread and the connecting seepage path will be reduced in MSW, resulting in the attenuation of permeability for MSW. The higher the saturation degree in MSW, the smaller the permeability and the larger the air pressure at demarcation point. Within the effective porosity in the tests, there are better relationships among the permeability coefficient of MSW, the air pressure at demarcation point and the effective porosity, and the non-Darcy coefficients are changed in a narrow range.
  • [1] 魏海云, 詹良通, 陈云敏. 城市生活垃圾的气体渗透性试验研究[J]. 岩石力学与工程学报, 2007, 26(7): 1408-1415. (WEI Hai-yun, ZHAN Liang-tong, CHEN Yun-min. Experimental study on gas permeability of municipal solid waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1408-1415. (in Chinese))
    [2] 刘晓东, 施建勇. 基于土水特征曲线预测城市固体废弃物(MSW)非饱和渗透系数研究[J]. 岩土工程学报, 2012, 34(5): 855-862. (LIU Xiao-dong, SHI Jian-yong, Unsaturated conductivity of MSW based on soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 855-862. (in Chinese))
    [3] JAIN P, POWELL J, TOWNSEND T G, et al. Air permeability of waste in a municipal solid waste landfill[J]. Journal of Environmental Engineering, 2005, 131(11): 1565-1573.
    [4] KALUARACHCHI J. Analytical solution to two-dimensional axisymmetric gas flow with Klinkenberg effect[J]. Journal of Environmental Engineering, ASCE, 1995, 121(5): 417-420.
    [5] YESILLER N, HANSON J L, LIU W L. Heat generation in municipal solid waste landfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1330-1344.
    [6] MARTIN J W, STARK T D, THALHAMER T, et al. Detection of aluminum waste reactions and waste fires[J]. Journal of hazardous, Toxic, and Radioactive Waste, 2013, 17(3): 164-174.
    [7] STOLTZ G, GOURC J P, OXARANGO L. Liquid and gas permeabilities of unsaturated municipal solid waste under compression[J]. Journal of contaminant Hydrology, 2010, 118(1): 27-42.
    [8] LIU X, SHI J, QIAN X, et al. Biodegradation behavior of municipal solid waste with liquid aspects: experiment and verification[J]. Journal of Environmental Engineering, ASCE, 2013, 139(12): 1488-1496.
    [9] LI Y C, ZHENG J, CHEN Y M, et al. One-dimensional transient analytical solution for gas pressure in municipal solid waste landfills[J]. Journal of Environmental Engineering, ASCE, 2013, 139(12): 1441-1445.
    [10] YU L, BATLLE F, CARRERA J, et al. Gas flow to a vertical gas extraction well in deformable MSW landfills[J]. Journal of Hazardous Materials, 2009, 168(3): 1404-1416.
    [11] HETTISRACHCHI C H, MEEGODA J N, HETTIARATCHI J P A. Effects of gas and moisture on modeling of bioreactor landfill settlement[J]. Waste Management, 2009, 29(2): 1018-1025.
    [12] ARIGALA S G, TSOTSIS T T, WEBSTER I A, et al. Gas Generation, transport, and extraction in landfill[J]. Journal of Environmental Engineering, ASCE, 1995, 121(1): 33-44.
    [13] REDDY K R, KULKARNI H S, KHIRE M V. Two-phase modeling of leachate recirculation using vertical wells in bioreactor landfills[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2013, 17(4): 272-284.
    [14] TEK M R. Development of a generalized Darcy equation[J]. Journal of Petroleum Technology, 1957, 9(6): 45-47.
    [15] GEERTSMA J. Estimating the coefficient of inertial resistance in fluid flow through porous media[J]. Society of Petroleum Engineers Journal, 1974, 14(5): 445-450.
    [16] CVETKOVIĆ V D. A continuum approach to high velocity flow in a porous medium[J]. Transport in Porous Media, 1986, 1(1): 63-97.
    [17] FIROOZABADI A, KATZ D L. An analysis of high-velocity gas flow through porous media[J]. Journal of Petroleum Technology, 1979, 31(2): 211-216.
    [18] KALLEL A, TANAKA N, MATSUTO T. Gas permeability and tortuosity for packed layers of processed municipal solid wastes and incinerator residue[J]. Waste Management, 2004, 22(3): 186-194.
    [19] 宋兆杰, 李相方, 李治平, 等. 考虑非达西渗流的底水锥进临界产量计算模型[J]. 石油学报, 2012, 33(1): 106-111. (SONG Zhao-jie, LI Xiang-fang, LI Zhi-ping, et al. A model for calculation critical production rates of water coning with consideration of non-Darcy flow[J]. Acta Petrolei Sinica, 2012, 33(1): 106-111. (in Chinese))
    [20] 张振营, 吴世明, 陈云敏. 城市生活垃圾土性参数的室内试验研究[J]. 岩土工程学报, 2000, 22(1): 35-39. (ZHANG Zhen-ying, WU Shi-ming, CHEN Yun-min. Experimental research on the parameter of life rubbish in city[J]. Chinese Journal of Geotechnic al Engineering, 2000, 22(1): 35-39. (in Chinese))
    [21] 钱学德, 施建勇, 刘晓东. 现代卫生填埋场的设计与施工[M]. 2版. 北京: 中国建筑工业出版社, 2011. (QIAN Xue-de, SHI Jian-yong, LIU Xiao-dong. Design and construction of modern sanitary landfills[M]. 2nd ed. Beijing: China Architecture and Building Press, 2011. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-17
  • 发布日期:  2015-05-05

目录

    /

    返回文章
    返回