• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

钻爆施工条件下岩溶隧道掌子面突水机制及最小安全厚度研究

李术才, 袁永才, 李利平, 叶志华, 张乾青, 雷霆

李术才, 袁永才, 李利平, 叶志华, 张乾青, 雷霆. 钻爆施工条件下岩溶隧道掌子面突水机制及最小安全厚度研究[J]. 岩土工程学报, 2015, 37(2): 313-320. DOI: 10.11779/CJGE201502015
引用本文: 李术才, 袁永才, 李利平, 叶志华, 张乾青, 雷霆. 钻爆施工条件下岩溶隧道掌子面突水机制及最小安全厚度研究[J]. 岩土工程学报, 2015, 37(2): 313-320. DOI: 10.11779/CJGE201502015
LI Shu-cai, YUAN Yong-cai, LI Li-ping, YE Zhi-hua, ZHANG Qian-qing, LEI Ting. Water inrush mechanism and minimum safe thickness of rock wall of karst tunnel face under blast excavation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 313-320. DOI: 10.11779/CJGE201502015
Citation: LI Shu-cai, YUAN Yong-cai, LI Li-ping, YE Zhi-hua, ZHANG Qian-qing, LEI Ting. Water inrush mechanism and minimum safe thickness of rock wall of karst tunnel face under blast excavation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 313-320. DOI: 10.11779/CJGE201502015

钻爆施工条件下岩溶隧道掌子面突水机制及最小安全厚度研究  English Version

基金项目: 国家重点基础研究发展计划(973)项目(2013CB036000); 国家自然科学基金重点项目(51139004); 国家自然科学基金面上基金项目(51479106); 湖北省交通运输厅科研项目(BYXYKY2012-003)
详细信息
    作者简介:

    李术才(1965- ),男,博士,教授,博士生导师,主要从事裂隙岩体断裂损伤、地质灾害超前预报与防治等方面的教学与研究工作。E-mail: lishucai@sdu.edu.cn。

  • 中图分类号: TU47

Water inrush mechanism and minimum safe thickness of rock wall of karst tunnel face under blast excavation

  • 摘要: 岩体裂纹的水力劈裂破坏是岩溶隧道突水灾害发生的主要影响因素之一。从断裂力学角度分析了在钻爆施工条件下爆炸应力波对含水裂纹岩体扩展的影响,结果表明爆炸应力波通过增大孔隙水压力影响裂纹扩展模式;通过建立的岩体含水裂纹扩展计算模型,推导了在爆炸应力波作用下裂纹发生压剪扩展破坏时的临界水压力Pc,并被实例所验证。基于理论分析、数值试验及工程实例,得出了岩体含水裂纹压剪扩展破坏突水存在滞后效应,施工人员可利用这一特点,在发生突水灾害前,及时停工并迅速撤离,保证人员与机械设备的安全。最后,通过对岩溶隧道掌子面与高压含水体之间裂隙岩体的防突最小安全厚度的研究,提出“两带”理论,推导了合理反映爆破开挖扰动与水压作用下裂纹岩体最小安全厚度计算公式,并为工程实例所验证,其结果可为高风险岩溶地区隧道突水预测及防治提供理论依据。
    Abstract: The hydraulic fracturing of rock mass is one of the main factors for water inrush in karst tunnels. From the perspective of fracture mechanics, the impact of explosive stress wave on extension of water-carrying fracture is studied under drilling and blast construction. The results show that the expansion pattern of fracture is influenced by the pore water pressure produced by the explosive stress wave. By establishing the computational model for fractured rock mass, the critical water pressure (Pc) under the explosive stress wave is deduced, and it is verified by cases. Based on the theoretical analysis, numerical experiments and engineering cases, the hysteresis effect of water inrush caused by extended compression-shear failure of rock mass is obtained. According to the hysteresis effect, constructors can terminate construction and leave immediately before the occurrence of water inrush so as to ensure the safety of personnel and mechanical equipments. By analyzing the minimum safe thickness between the fractured rocks of karst tunnel face and high-pressure aquifer, “Two-band theory” is put forward. Furthermore, the formula for the minimum safe thickness is deduced, which can reflect the excavation and water pressure reasonably and is verified by engineering cases. It may provide a reference for the effective measures for water inrush in high-risk karst areas.
  • [1] 李宗利, 张宏朝, 任青文, 等. 岩石裂纹水力劈裂分析与临界水压计算[J]. 岩土力学, 2005, 26(8): 1216-1220. (LI Zong-li, ZHANG Hong-chao, REN Qing-wen, et al. Analysis of hydraulic fracturing and calculation of critical internal water pressure of rock fracture[J]. Rock and Soil Mechanics, 2005, 26(8): 1216-1220. (in Chinese))
    [2] 黄润秋, 王贤能, 陈龙生. 深埋隧道涌水过程的水力劈裂作用分析[J]. 岩石力学与工程学报, 2000, 19(5): 573-576. (HUANG Run-qiu, WANG Xiang-neng, CHEN Long-sheng. Hydro-splitting off analysis on underground water in deep-lying tunnel and its effect on water gushing out[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(5): 573-576. (in Chinese))
    [3] 李利平, 李术才, 张庆松. 岩溶地区隧道裂隙水突出力学机制研究[J]. 岩土力学, 2010, 31(2): 523-528. (LI Li-ping, LI Shu-cai, ZHANG Qing-song. Study of mechanism of water inrush induced by hydraulic fracturing in karst tunnels[J]. Rock and Soil Mechanics, 2010, 31(2): 523-528. (in Chinese))
    [4] 谢兴华, 速宝玉. 裂隙岩体水力劈裂研究综述[J]. 岩土力学, 2004, 25(2): 330-336. (XIE Xing-hua, SU Bao-yu. A review of fracture rock hydraulic fracturing research[J]. Rock and Soil Mechanics, 2004, 25(2): 330-336. (in Chinese))
    [5] 陈卫忠, 朱维申, 罗超文. 万家寨引黄工程总干一、二级泵站水力劈裂试验研究[J]. 岩土力学, 2001, 22(1): 26-28. (CHEN Wei-zhong, ZHU Wei-shen, LUO Chao-wen. Hydraulic jacking tests at GMPS1 and GMPS2 of Shanxi Yellow River diversion project[J]. Rock and Soil Mechanics, 2001, 22(1): 26-28. (in Chinese))
    [6] 郭佳奇, 乔春生. 岩溶隧道掌子面突水机制及岩墙安全厚度研究[J]. 铁道学报, 2012, 34(3): 106-111. (GUO Jia-qi, QIAO Chun-sheng. Study on water-inrush mechanism and safe thickness of rock wall of karst tunnel face[J]. Journal of the China Railway Society, 2012, 34(3): 106-111. (in Chinese))
    [7] 臧守杰. 强岩溶区隧道施工中隧底最小安全厚度分析研究[J]. 隧道建设, 2007, 27(5): 17-19. (ZANG Shou-jie. Theoretical study on minimum safe thickness of floors of tunnels in heavy karst areas during construction[J]. Tunnel Construction, 2007, 27(5): 17-19. (in Chinese))
    [8] 范天佑. 断裂动力学原理与应用[M]. 北京: 北京理工大学出版社, 2006. (FAN Tian-you. Principle and application of fracture dynamics[M]. Beijing: Beijing Institute of Technology Press, 2006. (in Chinese))
    [9] 高庆. 工程断裂力学[M]. 重庆: 重庆大学出版社, 1985. (GAO Qing. Engineering fracture mechanics[M]. Chongqing: Chongqing University Press, 1985. (in Chinese))
    [10] 王鹰, 陈强, 魏有仪, 等. 岩溶发育区深埋隧道水岩相互作用机理[J]. 中国铁道科学, 2004, 25(4): 55-58. (WANG Ying, CHEN Qiang, WEI You-yi, et al. Water-rock interaction mechanism in deep-buried tunnels in karst area[J]. China Railway Science, 2004, 25(4): 55-58. (in Chinese))
    [11] 王建秀, 冯波, 张兴胜, 等. 岩溶隧道围岩水力破坏机制研究[J]. 岩石力学与工程学报, 2010, 29(7): 1363-1370. (WANG Jian-xiu, FENG Bo, ZHANG Xing-sheng, et al. Fracture mechanical model and hydrochemical-hydraulic coupled damage evolution equation of limestone[J]. Journal of Tongji University: Natural Science, 2010, 29(7): 1363-1370. (in Chinese))
    [12] 汪魁, 赵明阶. 岩石压剪裂纹水力劈裂分析及裂纹面方向计算[J]. 重庆交通大学学报(自然科学版), 2010, 29(3): 441-444. (WANG Kui, ZHAO Ming-jie. Analysis on tension-shear complex fracture under rock stress and the calculation of fracture direction[J]. Journal of Chongqing Jiaotong University (Natural Science), 2010, 29(3): 441-444. (in Chinese))
    [13] 李银平, 杨春和. 裂纹几何特征对压剪复合断裂的影响分析[J]. 岩石力学与工程学报, 2006, 25(3): 462-466. (LI Yin-ping, YANG Chun-he. Influence of geometric characteristics of pre-existing cracks on mixed mode fractures under compression-shear loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 462-466. (in Chinese))
    [14] 李利平, 李术才, 石少帅, 等. 岩体突水通道形成过程中应力-渗流-损伤多场耦合机制[J]. 采矿与安全工程学报, 2012, 29(2): 232-238. (LI Li-ping, LI Shu-cai, SHI Shao-shuai, et al. Multi-field coupling mechanism of seepage damage for the water inrush channel formation process of coal mine[J]. Journal of Mining & Safety Engineering, 2012, 29(2): 232-238. (in Chinese))
    [15] 李扬帆, 盛谦, 张勇慧, 等. 地下洞室开挖扰动区研究进展[J]. 地下空间与工程学报, 2013, 9(增刊2): 2083-2091. (LI Yang-fan, SHENG Qian, ZHANG Yong-hui, et al. Advances in research on excavation disturbed zone of underground openings[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(S2): 2083-2091. (in Chinese))
    [16] 吉小明. 隧道开挖的围岩损伤扰动带分析[J]. 岩石力学与工程学报, 2005, 24(10): 1697-1702. (JI Xiao-ming. Study on mechanical and hydraulic behavior of tunnel surrounding rock masses in excavation-disturbed zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(10): 1697-1702. (in Chinese))
    [17] 余伟健, 杜少华, 王卫军, 等. 高应力软岩近距离巷道工程的掘进扰动与稳定性[J]. 岩土工程学报, 2014, 36(1): 57-64. (YU Wei-jian, DU Shao-hua, WANG Wei-jun, et al. Excavation disturbance and stability of short-distance roadway with high stress and soft rock mass[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 57-64. (in Chinese))
    [18] 邹洋, 李夕兵, 周子龙, 等. 开挖扰动下高应力岩体的能量演化与应力重分布规律研究[J]. 岩土工程学报, 2012, 34(9): 1677-1684. (ZOU Yang, LI Xi-bing, ZHOU Zi-long, et al. Energy evolution and stress redistribution of high-stress rock mass under excavation distribution[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1677-1684. (in Chinese))
    [19] 陈明, 胡英国, 卢文波, 等. 深埋隧洞爆破开挖扰动损伤效应的数值模拟[J]. 岩土力学, 2011, 32(5): 1531-1537. (CHEN Ming, HU Ying-guo, LU Wen-bo, et al. Numerical simulation of blasting excavation induced damage to deep tunnel[J]. Rock and Soil Mechanics, 2011, 32(5): 1531-1537. (in Chinese))
    [20] 孟召平, 高延法, 卢爱红. 矿井突水危险性评价理论与方法[M]. 北京: 科学出版社, 2011. (MENG Zhao-ping, GAO Yan-fa, LU Ai-hong. Theory and method of risk assessment of mine water bursting[M]. Beijing: Science Press, 2011. (in Chinese))
    [21] 干昆蓉, 杨毅, 李建设. 某隧道岩溶突水机理分析及安全岩墙厚度的确定[J]. 隧道建设, 2007, 27(3): 13-16. (GAN Kun-rong, YANG Yi, LI Jian-she. Analysis on karst water inflow mechanisms and determination of thickness of safe rock walls: case study on a tunnel[J]. Tunnel Construction, 2007, 27(3): 13-16. (in Chinese))
    [22] UNLU T, GERCEK H. Effect of Poisson's ratio on the normalized radial displacements occurring around the face of a circular tunnel[J]. Tunneling and Underground Space Technology, 2003, 18(5): 547-553.
  • 期刊类型引用(20)

    1. 刘新荣,罗新飏,郭雪岩,周小涵,王浩,许彬,郑颖人. 巫山段岸坡水岩劣化特征及危岩失稳破坏模式. 工程地质学报. 2025(01): 240-257 . 百度学术
    2. 郭双枫,府金宇,张鹏,李宁. 断层控制的蠕滑型顺层岩质滑坡变形破坏机制与失稳模式. 地震工程学报. 2025(03): 542-553 . 百度学术
    3. 白继航. 基于数值模拟的顺层岩质边坡动力响应研究. 山西交通科技. 2025(02): 62-65+110 . 百度学术
    4. 刘新荣,王浩,郭雪岩,罗新飏,周小涵,许彬. 考虑消落带岩体劣化影响的典型危岩岸坡稳定性研究. 岩土力学. 2024(02): 563-576 . 百度学术
    5. 何钰铭,赵振洋,谢迪,王金波,黄宁. 三峡库区岩质库岸劣化变形演化过程与规律分析——以破水峡库岸为例. 中国资源综合利用. 2024(02): 26-29 . 百度学术
    6. 谢周州,赵炼恒,李亮,黄栋梁,张子健,周靖. 基于振动台试验的不同含石率土-石混合体边坡地震动响应差异性研究. 岩土力学. 2024(08): 2324-2337 . 百度学术
    7. 周开挥,王玉良,韩嘉琦. 德兴铜矿南平山边坡稳定性分析及治理. 建筑技术开发. 2024(08): 123-126 . 百度学术
    8. 赵黎,粟登峰,谭宝会,胡颖鹏,陈帮洪,李正国. 基于CRITIC-GRA-AHP法的敏感性排序理论及其在边坡稳定性分析中的应用. 矿业研究与开发. 2024(09): 82-93 . 百度学术
    9. 张嘉伦,马强,蒋汇鹏. P_1波在饱和土和饱和冻土介质分界面上的透反射问题研究. 岩土力学. 2024(10): 3139-3152 . 百度学术
    10. 王通,刘先峰,侯召旭,张俊,邵珠杰,田士军,胡金山. 碎裂状顺层岩质边坡地震动力响应与破坏模式. 工程科学与技术. 2023(02): 39-49 . 百度学术
    11. 李天降. 富含伊利石软弱夹层的宣威群路堑顺层边坡开挖优化分析. 安全与环境工程. 2023(02): 129-135 . 百度学术
    12. 刘新荣,郭雪岩,许彬,周小涵,曾夕,谢应坤,王?. 含消落带劣化岩体的危岩边坡动力累积损伤机制研究. 岩土力学. 2023(03): 637-648 . 百度学术
    13. 蒋汇鹏,马强,曹亚鹏. P波在弹性介质与饱和冻土介质分界面上的透反射问题研究. 岩土力学. 2023(03): 916-929 . 百度学术
    14. 周昌,马文超,胡元骏,史光明. 基于透明土的库水位骤降下消落带滑坡-伞型锚体系变形破坏机理. 工程地质学报. 2023(04): 1407-1417 . 百度学术
    15. 邹广明. 基于模型试验的堤防岸坡土层含水特征及安全稳定性影响研究. 四川水利. 2023(04): 38-42 . 百度学术
    16. 黄浩,余姝,郭健,赵鹏,张枝华. 顺层陡倾斜坡溃屈破坏机理研究. 煤炭科技. 2023(05): 9-16 . 百度学术
    17. 宋健. 某高速公路岩质高边坡破坏机理及稳定性分析. 山西建筑. 2023(24): 82-85 . 百度学术
    18. 魏宇,曾令涛. 岩质高边坡稳定性分析及防治措施研究——以洋溪水利枢纽船闸下引航道高边坡为例. 广西水利水电. 2023(06): 1-8 . 百度学术
    19. 殷跃平,王鲁琦,赵鹏,张枝华,黄波林,王雪冰. 三峡库区高陡岸坡溃屈失稳机理及防治研究. 水利学报. 2022(04): 379-391 . 百度学术
    20. 宋俊宏. 基于PFC的乔连河岸坡岩石力学特性及动力响应特征研究. 甘肃水利水电技术. 2022(06): 27-31+37 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 29
出版历程
  • 收稿日期:  2014-07-07
  • 发布日期:  2015-03-01

目录

    /

    返回文章
    返回