• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于FSWT时频分析的矿山微震信号分析与识别

赵国彦, 邓青林, 马举

赵国彦, 邓青林, 马举. 基于FSWT时频分析的矿山微震信号分析与识别[J]. 岩土工程学报, 2015, 37(2): 306-312. DOI: 10.11779/CJGE201502014
引用本文: 赵国彦, 邓青林, 马举. 基于FSWT时频分析的矿山微震信号分析与识别[J]. 岩土工程学报, 2015, 37(2): 306-312. DOI: 10.11779/CJGE201502014
ZHAO Guo-yan, DENG Qing-lin, MA Ju. Recognition of mine microseismic signals based on FSWT time-frequency analysis[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 306-312. DOI: 10.11779/CJGE201502014
Citation: ZHAO Guo-yan, DENG Qing-lin, MA Ju. Recognition of mine microseismic signals based on FSWT time-frequency analysis[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 306-312. DOI: 10.11779/CJGE201502014

基于FSWT时频分析的矿山微震信号分析与识别  English Version

基金项目: 国家自然科学基金面上项目(51374244)
详细信息
    作者简介:

    赵国彦(1963- ),男,湖南益阳人,教授,从事采矿与岩石力学研究。E-mail: gy_zhao@263.net。

  • 中图分类号: TU47

Recognition of mine microseismic signals based on FSWT time-frequency analysis

  • 摘要: 采用频率切片小波变换技术(frequency slice wavelet transform,FSWT)对典型的矿山岩体微震信号和爆破振动信号进行了研究。首先利用FSWT分解一组信号,对两类波形进行了时频特性分析;然后利用其逆变换能切割任意频率区间的特点,构造6个连续的子频带并得到重构信号,并通过划分更细化的子频带,进行了两类信号不同的能量分布特性对比研究。研究结果表明:该矿山岩体微震信号和爆破振动信号的能量主要都分布于100 Hz以下,其中岩体微震信号的能量主要集中在0~50 Hz,爆破振动信号则主要集中在50~100 Hz;对于高于100 Hz区域,爆破振动信号所占能量比例更大。
    Abstract: Typical microseismic and blast vibration signals of mine rock mass are studied by using the frequency slice wavelet transform (FSWT). First, FSWT is used to decompose the signals in time and frequency domains, and time-frequency characteristics of two kinds of waveforms are analyzed. Next, owing to that the frequency bands can be chosen arbitrarily through inverse transform of FSWT, different energy distribution characteristics of the two kinds of signals are studied by building 6 continuous sub-bands so as to get the reconstructed signals, then the sub-bands are divided more narrowly for deeper researches. The results show that the energy of the two kinds of signals is mainly distributed below 100 Hz in this mine, and the difference is as follows: the energy of rock mass microseimic signals is mainly concentrated in the band between 0~50 Hz, but for the blast vibration signals, the energy is concentrated more obviously in the band between 50~100 Hz and has a higher energy proportion than that of the rock mass microseimic signals over 100 Hz.
  • [1] 唐礼忠, 杨承祥, 潘长良. 大规模深井开采微震监测系统站网布置优化[J]. 岩石力学与工程学报, 2006, 25(10): 2036-2042. (TANG Li-zhong, YANG Cheng-xiang, PAN Chang-liang. Optimization of microseismic monitoring network for large-scale deep well mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2036-2042. (in Chinese))
    [2] 李庶林, 尹贤刚, 郑文达, 等. 凡口铅锌矿多通道微震监测系统及其应用研究[J]. 岩石力学与工程学报, 2005, 24(12): 2048-2053. (LI Shu-lin, YIN Xian-gang, ZHENG Wen-da, et al. Research of multi-channel microseismic monitoring system and its application to Fankou lead-zinc mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2048-2053. (in Chinese))
    [3] 赵兴东, 石长岩, 刘建坡, 等. 红透山铜矿微震监测系统及其应用[J]. 东北大学学报(自然科学版), 2008, 29(3): 399-402. (ZHAO Xing-dong, SHI Chang-yan, LIU Jian-po, et al. Microseismic monitoring system establishment and its application study in Hongtoushan copper mine[J]. Journal of Northeastern University (Natural Science), 2008, 29(3): 399-402. (in Chinese))
    [4] GE Mao-chen. Efficient mine microseismic monitoring[J]. International Journal of Coal Geology, 2005, 64(1): 44-56.
    [5] 陆菜平, 窦林名, 吴兴荣, 等. 岩体微震监测的频谱分析与信号识别[J]. 岩土工程学报, 2005, 27(7): 772-775. (LU Cai-ping, DOU Lin-ming, WU Xing-rong, et al. Frequency spectrum analysis on microseismic monitoring and signal differentiation of rock material[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 772-775. (in Chinese))
    [6] 曹安业, 窦林名, 秦玉红, 等. 高应力区微震监测信号特征分析[J]. 采矿与安全工程学报, 2007, 24(2):146-149. (CAO An-ye, DOU Lin-ming, QIN Yu-hong, et al. Characteristic of microseismic monitoring signal in high stressed zone[J]. Journal of Mining & Safety Engineering, 2007, 24(2): 146-149. (in Chinese))
    [7] 唐礼忠, 陈资南, 张君, 等.矿山微震信号小波分析与研究[J]. 科技导报, 2013, 31(32): 29-33. (TANG Li-zhong, CHEN Zi-nan, ZHANG Jun, et al. Research and analysis on wavelet of mine microseismic signals[J]. Science & Technology Review, 2013, 31(32): 29-33. (in Chinese))
    [8] 朱权洁, 姜福兴. 爆破震动与岩石破裂微震信号能量分布特征研究[J]. 岩石力学与工程学报, 2012, 31(4): 723-730. (ZHU Quan-jie, JIANG Fu-xing. Study on energy distribution characters about blasting vibration and rock fracture microseismic signal[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 723-730. (in Chinese))
    [9] 郭涛, 方 向, 谢全民, 等. 频率切片小波变换在爆破振动信号时频特征精确提取中应用[J]. 振动与冲击, 2013, 32(22): 73-78. (GUO Tao, FANG Xiang, XIE Quan-min, et al. Application of FSWT in accurate extraction of time-frequency features for blasting vibration signals[J]. Journal of Vibration and Shock, 2013, 32(22): 73-78. (in Chinese))
    [10] YAN Zhong-hong, MIYAMOTO A, JIANG Zhong-wei. Frequency slice wavelet transform for transient vibration response analysis[J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1474-1489.
    [11] YAN Zhong-hong, MIYAMOTO A, JIANG Zhong-wei, et al. An overall theoretical description of frequency slice wavelet transform[J]. Mechanical Systems and Signal Processing, 2010, 24(2): 491-507.
    [12] YAN Zhong-hong, MIYAMOTO A, JIANG Zhong-wei. Frequency slice algorithm for modal signal separation and damping identification[J]. Computers and Structures, 2011, 89(1): 14-26.
    [13] 段晨东, 高强. 基于时频切片分析的故障诊断方法及应用[J]. 振动与冲击, 2011, 30(9): 1-5. (DUAN Chen-dong, GAO Qiang. Noval fault diagnosis approach using time-frequency slice analysis and its application[J]. Journal of Vibration and Shock, 2011, 30(9): 1-5. (in Chinese))
    [14] 李夕兵, 凌同华, 张义平. 爆破振动信号分析理论与技术[M]. 北京: 科学出版社, 2009. (LI Xi-bing, LING Tong-hua, ZHANG Yi-ping. Analysis of blast vibration signals-theories and methods[M]. Beijing: Science Press, 2009. (in Chinese))
    [15] 张贤达. 现代信号处理[M]. 2版. 北京: 清华大学出版社, 2002: 11-13. (ZHANG Xian-da. Modern signal process method[M]. 2nd ed. Beijing: Tsinghua University Press, 2002: 11-13. (in Chinese))
计量
  • 文章访问数:  3659
  • HTML全文浏览量:  13
  • PDF下载量:  780
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-23
  • 发布日期:  2015-03-01

目录

    /

    返回文章
    返回