• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

渗流问题的弱形式求积元分析

袁帅, 钟宏志

袁帅, 钟宏志. 渗流问题的弱形式求积元分析[J]. 岩土工程学报, 2015, 37(2): 257-262. DOI: 10.11779/CJGE201502007
引用本文: 袁帅, 钟宏志. 渗流问题的弱形式求积元分析[J]. 岩土工程学报, 2015, 37(2): 257-262. DOI: 10.11779/CJGE201502007
YUAN Shuai, ZHONG Hong-zhi. Seepage analysis using the weak form quadrature element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 257-262. DOI: 10.11779/CJGE201502007
Citation: YUAN Shuai, ZHONG Hong-zhi. Seepage analysis using the weak form quadrature element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 257-262. DOI: 10.11779/CJGE201502007

渗流问题的弱形式求积元分析  English Version

基金项目: 国家自然科学基金项目(51178247)
详细信息
    作者简介:

    袁 帅(1984- ),男,河北邯郸人,博士研究生,主要从事土力学数值方法的研究。E-mail: yuan_shuai@126.com。

  • 中图分类号: TU47

Seepage analysis using the weak form quadrature element method

  • 摘要: 对于渗流问题的研究在很多领域有着广泛的应用,工程中通常采用有限元法对其进行数值求解,这往往需要耗费较大的计算资源从而限制了其计算规模。弱形式求积元法是一种简单和高效的数值方法,该方法基于问题弱形式描述,可对全域进行高阶近似,具有较快的收敛性,在结构分析领域已有广泛的应用。将弱形式求积元法应用于渗流问题的求解,分析了二维及三维渗流问题,包括承压渗流和无压渗流;对于无压渗流,采用变网格方法,使用积分点位置的多项式插值来近似表示自由面。求解了数值算例并得到了与解析解或者文献解一致的结果。结果表明:与有限元法相比,弱形式求积元法使用较少的自由度就可以得到收敛的结果,显示了弱形式求积元法在渗流分析中的有效性。
    Abstract: Seepage analysis has found wide application in many areas. In practice, the conventional numerical tools such as the finite element method are mainly used in the seepage analysis, which often demand large computational resources and therefore impose restrictions on the problem scale. The weak form quadrature element method is a simple and efficient numerical tool which has been applied to structural analysis. Based on the weak form description of a problem, it has the characteristics of global approximation and enjoys rapid convergence. The method is used for simulation of two- and three-dimensional confined and unconfined seepage. For the unconfined seepage, the adaptive mesh method is employed, and the free surface is expressed by polynomial interpolation at integration points. The results are compared with those of other methods and good agreement is reached. It is shown that a relatively small number of degrees of freedom are needed to attain convergence by the quadrature element formulation as compared with those of the finite element method. The weak form quadrature element method is expected to be an effective numerical tool for seepage analysis.
  • [1] AHMED A, BAZARAA A. Three-dimensional analysis of seepage below and around hydraulic structures[J] . Journal of Hydrologic Engineering, 2009, 14(3): 243-247.
    [2] BATHE K J, KHOSHGOFTAAR M R. Finite element free surface seepage analysis without mesh iteration[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1979, 3(1): 13-22.
    [3] KAZEMZADEH-PARSI M J, DANESHMAND F. Unconfined seepage analysis in earth dams using smoothed fixed grid finite element method[J] . International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(6): 780-797.
    [4] KAZEMZADEH-PARSI M J, DANESHMAND F. Three dimensional smoothed fixed grid finite element method for the solution of unconfined seepage problems[J] . Finite Elements in Analysis and Design, 2013, 64(1): 24-35.
    [5] SAKURAI H, KAWAHARA M. Three-dimensional groundwater flow analysis system using the element-free galerkin method[J]. International Journal of Computational Fluid Dynamics, 2004, 18(4): 309-315.
    [6] JIE Y, JIE G, MAO Z, et al. Seepage analysis based on boundary-fitted coordinate transformation method[J]. Computers and Geotechnics, 2004, 31(4): 279-283.
    [7] RAFIEZADEH K, ATAIE-ASHTIANI B. Three dimensional flow in anisotropic zoned porous media using boundary element method[J]. Engineering Analysis with Boundary Elements, 2012, 36(5): 812-824.
    [8] ZHONG H, YU T. A weak form quadrature element method for plane elasticity problems[J]. Applied Mathematical Modelling, 2009, 33(10): 3801-3814.
    [9] ZHONG H, YU T. Flexural vibration analysis of an eccentric annular Mindlin plate[J]. Archive of Applied Mechanics, 2007, 77(4): 185-195.
    [10] MO Y, OU L, ZHONG H. Vibration analysis of timoshenko beams on a nonlinear elastic foundation[J]. Tsinghua Science & Technology, 2009, 14(3): 322-326.
    [11] HE R, ZHONG H. Large deflection elasto-plastic analysis of frames using the weak-form quadrature element method[J]. Finite Elements in Analysis and Design, 2012, 50(1): 125-133.
    [12] SHU C. Differential quadrature and its applications in engineering[M]. Berlin, Hoidelerg: Springer, 2000.
    [13] POLUBARINOVA-KOCHINA P K. Theory of groundwater movement[M]. Princeton: Princeton University Press, 1962: 506-509.
    [14] BRESCIANI E, DAVY P, DE DREUZY J R. A finite volume approach with local adaptation scheme for the simulation of free surface flow in porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics. 2012, 36(13): 1574-1591.
    [15] ELLIOTT C, OCKENDON J R. Weak and variational methods for moving boundary problems[M]. Boston: Pitman Pub, 1982.
    [16] WESTBROOK D R. Analysis of inequality and residual flow procedures and an iterative scheme for free surface seepage[J]. International Journal for Numerical Methods in Engineering. 1985, 21(10): 1791-1802.
计量
  • 文章访问数:  376
  • HTML全文浏览量:  5
  • PDF下载量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-13
  • 发布日期:  2015-03-01

目录

    /

    返回文章
    返回