• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和砂土液化后流体本构模型研究

周恩全, 王志华, 陈国兴, 吕丛

周恩全, 王志华, 陈国兴, 吕丛. 饱和砂土液化后流体本构模型研究[J]. 岩土工程学报, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
引用本文: 周恩全, 王志华, 陈国兴, 吕丛. 饱和砂土液化后流体本构模型研究[J]. 岩土工程学报, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
Citation: ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013

饱和砂土液化后流体本构模型研究  English Version

基金项目: 国家自然科学基金项目(50978235)
详细信息
    作者简介:

    周恩全(1986- ),男,山东烟台人,博士研究生,主要从事土动力学和岩土地震工程研究。E-mail: enquan1986@126.com。

    通讯作者:

    陈国兴

  • 中图分类号: TU413

Constitutive model for fluid of post-liquefied sand

  • 摘要: 利用空心圆柱扭剪仪开展了饱和南京细砂液化后常速率加载试验,考虑了有效固结压力和加载速率对饱和南京细砂液化后流体特性的影响,结果表明:液化后静加载过程中剪应力与孔压比的发展具有明显的二阶段特性,且剪应力与孔压比的发展有着良好的线性相关关系,有效围压及加载速率对二者的关系有着明显影响;据此提出一种符合液化后静加载过程的率相关性及孔压相关性流体本构模型,该模型将构成饱和砂土强度的土颗粒摩阻力与土-水黏滞阻力分别表示为时变型和非时变型剪切稀化流体;最后进行了该模型的验证性试验,并将模型预测结果与其他学者研究成果对比,验证试验及对比结果均表明该模型具有较好的适用性。
    Abstract: The static load tests on post-liquefied saturated Nanjing fine sand are carried out using the hollow cylinder apparatus. The effect of the initial effective confining pressure and loading rate on the fluid characteristics of post-liquefied saturated Nanjing fine sand is taken into account. The results show that the development process of the shear stress and pore water pressure ratio have obvious two-stage characteristics in static loading process, and they have a a good linear relationship. The effective confining pressure and the static loading rate have obvious influence on the relationship between them. On this basis, a constitutive model for fluid with rate and pore water pressure-dependent static loading process is proposed. In this model the friction resistance between soil particles and the viscous resistance between soil and water are respectively expressed as the thixotropic shear-thinning fluid and non-time-variant shear-thinning fluid. Finally, experiments and comparisons between the predicted curves and other researchers′test results are carried out, indicating that the proposed constitutive model has good applicability.
  • [1] 浜田政則, 安田進, 磯山龍二, 等. 液状化による地盤の永久変位の測定と考察[J]. 土木学会論文集, 1986, 376: 211-220. (HAMADA M, YASUDA S, ISOYAMA R, et al. Observation of permanent ground displacements-induced by soil liquefaction[J]. Proceedings of Japan Society of Civil Engineering, 1986, 376: 211-220. (in Japanese))
    [2] ADALIER K, A O. Liquefaction during the June 27, 1998 Adana-Ceyhan (Turkey) Earthquake[J]. Geotechnical and Geological Engineering, 2000, 18(3): 155-174.
    [3] SONMEZ B, ULUSAY R. Liquefaction potential at Izmit Bay: comparison of predicted and observed soil liquefaction during the Kocaeli Earthquake[J]. Bulletin of Engineering Geology and the Environment, 2008, 67(1): 1-9.
    [4] YUAN H, HUI Yang S, ANDRUS R D, et al. Liquefaction-induced ground failure: a study of the Chi-Chi earthquake cases[J]. Engineering Geology, 2004, 71(1/2): 141-155.
    [5] TOWHATA I, GOTO S, TAGUCHI Y, et al. Liquefaction Consequences and Learned Lessons During the 2011 Mw =9 Gigantic Earthquake[J]. Indian Geotechnical Journal, 2013, 43(2): 116-126.
    [6] TOWHATA I, YSSUDA S, KEN-ICHI T, et al. Prediction of permanent displacement of liquefied ground by means of minimum energy principle[J]. Soils and Foundations, 1992, 3(32): 97-116.
    [7] UZUOKA R, YASHIMA A, KAWAKAMI T, et al. Fluid dynamics based prediction of liquefaction induced lateral spreading[J]. Computers and Geotechnics, 1998, 22(3): 243-282.
    [8] HADUSH S, YASHIMA A, UZUOKA R. Importance of viscous fluid characteristics in liquefaction induced lateral spreading analysis[J]. Computers and Geotechnics, 2000, 27(3): 199-224.
    [9] HADUSH S, YASHIMA A, UZUOKA R, et al. Liquefaction induced lateral spread analysis using the CIP method[J]. Computers and Geotechnics, 2001, 28(8): 549-574.
    [10] KAWAKAMI T, SUEMASA N, HAMADA M, et al. Experimental study on mechanical properties of liquefied sand[C]// Proceedings of the 5th USJapan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Soil Liquefaction. Salt Lake City, 1994: 285-299.
    [11] HUANG Y, ZHENG H, MAO W, et al. Triaxial tests on the fluidic behavior of post-liquefaction sand[J]. Environmental Earth Sciences, 2012, 67(8): 2325-2330.
    [12] SAWICKI A, MIERCZYŃSKi J. On the behaviour of liquefied soil[J]. Computers and Geotechnics, 2009, 36(4): 531-536.
    [13] TOWHATA I, VARGAS-MONGE W, ORENSE R P, et al. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil[J]. Soil Dynamics and Earthquake Engineering. 1999, 18(5): 347-361.
    [14] TAMATE S, TOWHATA I. Numerical simulation of ground flow caused by seismic liquefaction[J]. Soil Dynamics and Earthquake Engineering. 1999, 18(7): 473-485.
    [15] DUNGCA J R, KUWANO J, TAKAHASHI A, et al. Shaking table tests on the lateral response of a pile buried in liquefied sand[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(2/3/4): 287-295.
    [16] 刘汉龙, 陈育民. 动扭剪试验中砂土液化后流动特性分析[J]. 岩土力学, 2009, 34(6): 1537-1541. (LIU Han-long, CHEN Yu-min. Analysis of flow characteristics of dynamic torsional tests on post liquefied sand[J]. 2009, 34(6): 1537-1541. (in Chinese))
    [17] HWANG J, KIM C, CHUNG C, et al. Viscous fluid characteristics of liquefied soils and behavior of piles subjected to flow of liquefied soils[J]. Soil Dynamics and Earthquake Engineering. 2006, 26(2/3/4): 313-323.
    [18] 陈育民, 刘汉龙, 邵国建, 等. 砂土液化及液化后流动特性试验研究[J]. 岩土工程学报, 2009, 31(9): 1408-1413. (CHEN Yu-min, LIU Han-long, SHAO Guo-jian, et al. Laboratory tests on flow characteristics of liquefied and post-liquefied sand[J]. 2009, 31(9): 1408-1413. (in Chinese))
    [19] 王志华, 周恩全, 陈国兴. 孔压增长后的饱和砂土流体特性及其孔压相关性[J]. 岩土工程学报, 2012, 34(3): 528-533. ( WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing, et al. Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 528-533. (in Chinese))
    [20] 谢定义, 张建民. 饱和砂土瞬态动力学特性与机理分析[M]. 西安: 陕西科学技术出版社, 1994. (XIE Ding-yi, ZHANG Jian-min. Transient dynamics characteristics and mechanism analysis of saturated sand[M]. Xian: Shanxi Publishing House of Science&Technology, 1994. (in Chinese))
    [21] 陈懋章. 黏性流体动力学基础[M]. 北京: 高等教育出版社, 2004. (CHEN Mao-zhang. Fundamentals of viscous fluid dynamics[M]. Beijing: Higher Education Press, 2004. (in Chinese))
    [22] HAMADA M, SATO H, KAWAKAMI T, et al. A consideration of the mechanism for liquefaction -related large ground displacement[C]// Proceedings of the 5th USJapan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Soil Liquefaction. Salt Lake City, 1994: 217-232.
计量
  • 文章访问数:  324
  • HTML全文浏览量:  13
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-28
  • 发布日期:  2015-01-19

目录

    /

    返回文章
    返回