• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土盾构隧道掘进开挖面稳定理论与颗粒流模拟研究

缪林昌, 王正兴, 石文博

缪林昌, 王正兴, 石文博. 砂土盾构隧道掘进开挖面稳定理论与颗粒流模拟研究[J]. 岩土工程学报, 2015, 37(1): 98-104. DOI: 10.11779/CJGE201501011
引用本文: 缪林昌, 王正兴, 石文博. 砂土盾构隧道掘进开挖面稳定理论与颗粒流模拟研究[J]. 岩土工程学报, 2015, 37(1): 98-104. DOI: 10.11779/CJGE201501011
MIU Lin-chang, WANG Zheng-xing, SHI Wen-bo. Theoretical and numerical simulations of face stability around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 98-104. DOI: 10.11779/CJGE201501011
Citation: MIU Lin-chang, WANG Zheng-xing, SHI Wen-bo. Theoretical and numerical simulations of face stability around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 98-104. DOI: 10.11779/CJGE201501011

砂土盾构隧道掘进开挖面稳定理论与颗粒流模拟研究  English Version

基金项目: 国家自然科学基金项目(11272194); 上海市自然科学基; 金项目(13ZR1416200)
详细信息
    作者简介:

    缪林昌(1961- ),男,教授,博士生导师,主要从事盾构施工对环境影响方面的研究。E-mail: lc.miao@seu.edu.cn。

  • 中图分类号: TU43

Theoretical and numerical simulations of face stability around shield tunnels in sand

  • 摘要: 盾构法隧道施工过程中,土体密实度对开挖面极限支护力值与稳定性影响是一个非常重要的因素。基于Kirsch室内模型试验,采用颗粒流计算分析了隧道掘进过程中土体密实度对开挖面极限支护力、残余支护力以及开挖面前方土体孔隙比变化的影响,从细观角度解释了砂土中盾构隧道开挖面失稳机理,分析了砂土中盾构隧道掘进时土体破坏形态与分布范围;进而提出了计算开挖面极限支护力的改进楔形体分析模型。研究成果可为盾构隧道施工中分析开挖面的稳定提供参考。
    Abstract: The soil density is a key factor for the studies on the limit support pressure and the face stability operation during tunneling construction. Based on the Kirsch’s laboratory model tests, the PFC2D is employed to investigate the influence of soil density on the limit support pressure, residual support pressure and void ratio in the heading face. The failure mechanisms of the excavation face are investigated at the mesoscopic level. The failure behavior and arrange of the face stability of the shield tunnels in sand are analyzed. The improved wedge model is proposed as a method for calculating the limit support pressure of face. It may provide certain guidance to the stabilization of excavation face of shield tunnels.
  • [1] 朱伟, 秦建设, 卢廷浩. 砂土中盾构开挖面变形与破坏数值模拟研究[J]. 岩土工程学报, 2005, 27(8): 897-902. (ZHU Wei, QIN Jian-she, LU Ting-hao. Numerical study on face movement and collapse around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 897-902. (in Chinese))
    [2] 李志华, 华渊, 周太全, 等. 盾构隧道开挖面稳定的可靠度分析[J]. 岩土力学, 2008, 29(增刊): 315-319. (LI Zhi-hua, HUA Yuan, ZHOU Tai-quan, et al. Research on reliability of excavation face stability in shield tunneling[J]. Rock and Soil Mechanics, 2008, 29(S0): 315-319. (in Chinese))
    [3] BROMS B B, BENNERMARK H. Stability of clay at vertical openings[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1967, 96(1): 71-94.
    [4] ROMO M P, DIAZ C M. Face stability and ground settlement in shield tunneling[C]// Proceeding of the 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 1981: 357-360
    [5] LECA E, DORMIEUX L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Journal of Geotechnical Engineering, 1990, 40(4): 581-606.
    [6] JANCSECZ S, STEINER W. Face support for a large mix-shield in heterogeneous ground conditions[C]// Symposium Tunneling’94. London, 1994: 531-550.
    [7] MOLLON G, DIAS D, SOUBRA A H. Face stability analysis of circular tunnels driven by a pressurized shield[J].Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(1): 215-229.
    [8] CHAMBON P, CORTE J F. Shallow tunnels in cohesionless soil: Stability of tunnel face[J].Journal of Geotechnical Engineering, 1994, 120(7): 1148-1165.
    [9] 徐明, 邹文浩, 刘瑶. 超大直径泥水盾构在砂土中的开挖面稳定性分析[J]. 土木工程学报, 2012, 45(3): 174-181. (XU Ming, ZOU Wen-hao, LIU Yao. Face stability of large slurry shield-driven tunnel in sands[J]. China Civil Engineering Journal, 2012, 45(3): 174-181. (in Chinese))
    [10] ANAGNOSTOU G. The contribution of horizontal arching to tunnel face stability[J]. Journal of Geotechnical Engineering, 2012, 35(1): 34-44.
    [11] VERMEER P A, RUSE N, MARCHER T. Tunnel heading stability in drained ground[J]. Felsbau, 2002, 20(8): 8-18.
    [12] 高健, 张义同, 乔金丽. 渗透力对隧道开挖面稳定性影响分析[J]. 岩土工程学报, 2009, 31(10): 1548-1553. (GAO Jian, ZHANG Yi-tong, QIAO Jin-li. Face stability analysis of tunnels with consideration of seepage force[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1548-1553. (in Chinese))
    [13] 胡欣雨, 张子新. 不同地层条件泥水盾构开挖面失稳状态颗粒流模拟方法研究[J]. 岩石力学与工程学报, 2013, 32(11): 2258-2267. (HU Xin-yu, ZHANG Zi-xin. Research on particle flow approach for modeling face failure mechanisum in slurry shield tunneling under complex ground condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2258-2267. (in Chinese))
    [14] KIRSCH A. Experimental investigation of face stability of shallow tunnels in sand[C]// 3rd International Workshop of Young Doctors in Geomechanics. Champs-sur-Marne, 2008.
    [15] ANAGNOSTOU G, KOVARI K. The face stability of slurry shield-driven tunnels[J]. Tunneling and Underground Space Technology, 1994, 9(2): 165-174.
    [16] 朱伟, 钟小春, 加瑞. 盾构隧道垂直土压力松动效应的颗粒流模拟[J]. 岩土工程学报, 2008, 30(5): 750-754. (ZHU Wei, ZHONG Xiao-chun, JIA Rui. Simulation on relaxation effect of vertical earth pressure for shield tunnels by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 750-754. (in Chinese))
    [17] 王正兴, 缪林昌, 王冉冉, 等. 砂土隧道施工对下卧管线影响的试验和数值模拟分析[J]. 岩土工程学报, 2014, 36(1): 182-187. (WANG Zheng-xing, MIU Lin-chang, WANG Ran-ran. Physical model tests and PFC 3D modeling of soil-pipe interaction in sands[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 182-187. (in Chinese))
    [18] CHEN R P, TANG L J,LING D S, et al. Face stability analysis of shallow tunnels in dry sandy ground using the discrete element method[J]. Computers and Geotechnics, 2011, 38: 187-195.
    [19] BROERE W. Tunnel face stability and new CPT applications[D]. Delft: Delft University, 2001.
    [20] BROERE W. Face stability calculation for a slurry shield in heterogeneous soft soils[C]// Proceedings of the World Tunnel Congress 98 on Tunnels and Metropolises. Sao Paolo, 1998: 215-218.
    [21] TERZAGKI K. Theoretical soil mechanics[M]. New York: John Wiley& Sons, Inc., 1943.
    [22] KIRSCH A. On the face stability of shallow tunnels in sand—Advances in geotechnical engineering and tunneling[M]. Rotterdam: A A Balkema Publishers, 2009.
  • 期刊类型引用(9)

    1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 . 百度学术
    2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 . 百度学术
    3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 . 百度学术
    4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 . 百度学术
    5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 . 百度学术
    6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 . 百度学术
    7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 . 百度学术
    8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 . 百度学术
    9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看

    其他类型引用(14)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 23
出版历程
  • 收稿日期:  2014-04-01
  • 发布日期:  2015-01-19

目录

    /

    返回文章
    返回