• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

碎石保护结构防护海底管线的机理及模型试验研究

闫澍旺, 郭炳川, 孙立强, 雷震名, 刘润

闫澍旺, 郭炳川, 孙立强, 雷震名, 刘润. 碎石保护结构防护海底管线的机理及模型试验研究[J]. 岩土工程学报, 2014, 36(11): 2036-2044. DOI: 10.11779/CJGE201411009
引用本文: 闫澍旺, 郭炳川, 孙立强, 雷震名, 刘润. 碎石保护结构防护海底管线的机理及模型试验研究[J]. 岩土工程学报, 2014, 36(11): 2036-2044. DOI: 10.11779/CJGE201411009
YAN Shu-wang, GUO Bing-chuan, SUN Li-qiang, LEI Zhen-ming, LIU Run. Mechanism and model tests on protection of submarine pipelines using rock armor berms[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2036-2044. DOI: 10.11779/CJGE201411009
Citation: YAN Shu-wang, GUO Bing-chuan, SUN Li-qiang, LEI Zhen-ming, LIU Run. Mechanism and model tests on protection of submarine pipelines using rock armor berms[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2036-2044. DOI: 10.11779/CJGE201411009

碎石保护结构防护海底管线的机理及模型试验研究  English Version

基金项目: 国家自然科学基金项目(51322904)
详细信息
    作者简介:

    闫澍旺(1950-),男,教授,博士生导师,主要从事结构物与土相互作用方面的研究工作。E-mail:yanshuwang@tju.edu.cn。

Mechanism and model tests on protection of submarine pipelines using rock armor berms

  • 摘要: 近海海底管线会在港口锚地处因船舶走锚而受到损害,碎石结构能够防护管线免受走锚的危害,因此研究碎石结构的防护机理对保护管线有重要意义。采用极限平衡方法分析了走锚状态下土楔对形状复杂的商用霍尔锚的作用力,提出了锚冠和锚爪的受力计算模式,采用3种不同几何相似比的模型锚在模型槽中进行了拖锚试验。模型试验的结果与计算结果相互吻合。锚体整体受力分析的结果表明,霍尔锚在从砂土进入碎石保护层后因力矩不平衡引起锚体翻转,使锚爪尖位置上移而远离埋设的管线,从而使管线避免走锚的伤害。该机理也通过模型试验得到验证。此外,不同试验锚重的归一化结果还说明,霍尔锚锚爪在碎石中的稳定入土深度约为爪长的0.45,拖曳力为2.5倍锚重,可为碎石结构设计参考。
    Abstract: Submarine pipelines are likely to be exposed to the risk of damage from drag anchors of ships that are out of control during severe storms. Rock armor berms are commonly adopted to protect the pipelines by deflecting drag anchors. To understand the protection mechanism, both theoretical studies and model tests are carried out. A limit equilibrium method is put forward to deal with the interaction between the drag Hall anchor and the developed soil wedges. The polygons of forces on the soil wedges induced by both the anchor crown and the anchor fluke are established respectively. The total drag force on the anchor is the sum of the drag force on the anchor crown and that on the anchor fluke. The minimum total drag force on the anchor can be solved by using the hill climbing algorithm. Model tests are carried out using three model anchors with different linear scales. The drag forces measured in model tests agree well with those calculated by the theoretical approach. With the obtained forces, the moment on the anchor can be calculated. It is found that when the anchor is dragged into the rock armor berm from the foundation soil, unbalanced moment on the anchor will take place,which will cause the drag anchor to rotate and the fluke tip to rise up. The deflecting of the anchor trajectory can make the fluke tip keep a safe distance from the buried pipeline, which explains the protection mechanism. Using the proposed approach, the position of the fluke tip and the drag force on the anchor under equilibrium conditions can be predicted, which may be helpful to the berm designers.
  • [1] GAUDIN C, VLAHOS G, RANDOLPH M F, et al. Investigation in centrifuge of anchor-pipeline interaction[J]. International Journal of Offshore and Polar Engineering, 2007, 17(1).
    [2] NEUBECKER S R, RANDOLPH M F. The static equilibrium of drag anchors in sand[J]. Canadian Geotechnical Journal, 1996, 33(4): 574-583.
    [3] NEUBECKER S R, RANDOLPH M F. The kinematic behaviour of drag anchors in sand[J]. Canadian Geotechnical Journal, 1996, 33(4): 584-594.
    [4] THORNE C P. Penetration and load capacity of marine drag anchors in soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(10): 945-953.
    [5] O'NEILL M P, BRANSBY M F, RANDOLPH M F. Drag anchor fluke soil interaction in clays[J]. Canadian Geotechnical Journal, 2003, 40(1): 78-94.
    [6] TRUE D G. Rapid penetration into seafloor soils[C]// Proceedings of the 6th Annual Offshore Technology Conference (OTC’74). 1974, 3: 607-618.
    [7] VERITAS D N. Risk assessment of pipeline protection[M]. Oslo: Det Norske Veritas, 2001.
    [8] VERITAS D N. On-bottom stability design of submarine pipelines[M]. Oslo: Det Norske Veritas, 2011.
    [9] WANG L Q, CHIA H K, WEI J W, et al. FEA-based study of pipeline protection from anchors[C]// ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2009: 859-866.
    [10] WANG L Q, CHIA H K. Optimization study of pipeline rock armour protection design based on finite element analysis[C]//ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2010: 165-170.
    [11] MACDONALD K A, COSHAM A, ALEXANDER C R, et al. Assessing mechanical damage in offshore pipelines-Two case studies[J]. Engineering Failure Analysis, 2007, 14(8): 1667-1679.
    [12] LELIEVRE B, TABATABAEE J. Holding capacity of marine anchors in sand[C]// First Canadian Conference on Marine Geotechnical Engineering. Preprints, 1979.
    [13] 3983—2008 C B T 无杆锚[S]. 2008. (3983—2008 C B T Stockless anchor[S]. 2008. (in Chinese))
  • 期刊类型引用(18)

    1. 倪小东,张宇科,陆江发,崔允亮. 地层局部沉陷诱发有压管道渗透侵蚀机制研究. 华中科技大学学报(自然科学版). 2025(02): 17-24 . 百度学术
    2. 王晓璞,赵海龙,任玲玲,高岩岩,薛东兴,山河,王斌,姚传进,赵建,白英睿. 结合人工智能图像识别的微塑料运移与滞留微观可视化实验方法. 实验技术与管理. 2025(04): 14-19 . 百度学术
    3. 梁越,冉裕星,许彬,张鑫强,何慧汝. 细颗粒含量影响渗流侵蚀规律的细观机理研究. 岩土工程学报. 2025(05): 1099-1106 . 本站查看
    4. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 . 百度学术
    5. 刘江涛,李存军,于江华,张彦红,张春彬,孔纲强. 施工顺序对微型钢管桩加固既有基础变形的影响试验研究. 土木与环境工程学报(中英文). 2024(04): 100-108 . 百度学术
    6. 梁越,何慧汝,许彬,张鑫强,冉裕星. 基于透明土的水力梯度对渗流侵蚀影响试验研究. 河海大学学报(自然科学版). 2024(05): 60-66 . 百度学术
    7. 徐春瑞,郭畅,黄博. 孔隙率对砂土渗透稳定性影响的内部可视化研究. 地基处理. 2024(05): 451-462 . 百度学术
    8. 王宇,陈从建,钱声源,段祥宝,谷艳昌. 可视化渗透破坏实验装置研发及土力学实践探索. 力学与实践. 2023(01): 193-199 . 百度学术
    9. 周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 . 百度学术
    10. 李敏,齐振霄,姚昕妤,赵博华,李琦. 基于可视角度下重金属污染物在介质中的迁移规律. 环境工程学报. 2023(04): 1303-1312 . 百度学术
    11. 马朝阳,任杰,南胜豪,徐松. 土石堤坝渗漏病险试验装置的研制及初步应用. 岩土工程学报. 2023(11): 2268-2277 . 本站查看
    12. 侯娟,滕宇阳,李昊,刘磊. 多孔介质曲折度对膨润土衬垫渗透性能的影响. 湖南大学学报(自然科学版). 2022(01): 155-164 . 百度学术
    13. 梁越,代磊,魏琦. 基于透明土和粒子示踪技术的渗流侵蚀试验研究. 岩土工程学报. 2022(06): 1133-1140 . 本站查看
    14. 顾展飞,田光辉,王栩硕,于文搏. 地下管线渗漏对粉土地面塌陷过程的影响及实验研究. 科技创新与应用. 2022(25): 61-64 . 百度学术
    15. 杜建明,房倩,刘翔,海路. 透明土物理模拟试验技术现状与趋势. 科学技术与工程. 2021(03): 852-861 . 百度学术
    16. 谷敬云,罗玉龙,张兴杰,詹美礼,王媛,盛金昌. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用. 岩石力学与工程学报. 2021(06): 1287-1296 . 百度学术
    17. 冷先伦,王川,庞荣,盛谦. 透明胶结土材料强度特性的试验研究. 岩土力学. 2021(08): 2059-2068+2077 . 百度学术
    18. 赵宽耀,许强,刘方洲,张先林. 黄土中优势通道渗流特征研究. 岩土工程学报. 2020(05): 941-950 . 本站查看

    其他类型引用(11)

计量
  • 文章访问数:  423
  • HTML全文浏览量:  4
  • PDF下载量:  238
  • 被引次数: 29
出版历程
  • 收稿日期:  2014-02-13
  • 发布日期:  2014-11-19

目录

    /

    返回文章
    返回