• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

热管及保温材料在青藏直流联网工程中的应用研究

穆彦虎, 俞祁浩, 李国玉, 马巍, 毛云程, 郭磊

穆彦虎, 俞祁浩, 李国玉, 马巍, 毛云程, 郭磊. 热管及保温材料在青藏直流联网工程中的应用研究[J]. 岩土工程学报, 2014, 36(10): 1896-1907. DOI: 10.11779/CJGE201410018
引用本文: 穆彦虎, 俞祁浩, 李国玉, 马巍, 毛云程, 郭磊. 热管及保温材料在青藏直流联网工程中的应用研究[J]. 岩土工程学报, 2014, 36(10): 1896-1907. DOI: 10.11779/CJGE201410018
MU Yan-hu, YU Qi-hao, LI Guo-yu, MA Wei, MAO Yun-cheng, GUO Lei. Application of thermosyphons and insulated boards in Qinghai-Tibet DC Interconnection Project in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1896-1907. DOI: 10.11779/CJGE201410018
Citation: MU Yan-hu, YU Qi-hao, LI Guo-yu, MA Wei, MAO Yun-cheng, GUO Lei. Application of thermosyphons and insulated boards in Qinghai-Tibet DC Interconnection Project in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1896-1907. DOI: 10.11779/CJGE201410018

热管及保温材料在青藏直流联网工程中的应用研究  English Version

基金项目: 国家重点基础研究发展计划项目(2012CB026106); 国家电网公司科技项目(SGJSJS(2010)935-936); 中国科学院西部之光“西部博士”项目(51Y351211)
详细信息
    作者简介:

    穆彦虎(1985- ),男,博士,助理研究员,主要从事寒区工程与冻土力学方面的研究。E-mail: muyanhu@lzb.ac.cn。

Application of thermosyphons and insulated boards in Qinghai-Tibet DC Interconnection Project in permafrost regions

  • 摘要: 针对青藏直流联网工程塔基热管措施应用效果,通过现场实测资料确定了热管年内工作周期及混凝土桩基表面热效应,考虑无绝热段热管传热过程组成,建立空气-热管-土体耦合传热数学模型,利用有限元方法系统模拟不同年平均地温分区锥柱式塔基传热过程及气候变暖背景下基础周围多年冻土热状况发展变化趋势。结果表明:冷季热管工作期间,其对周围土体冷却降温效果显著,同时由于混凝土塔基为热的良导体,热管产生的“冷量”通过基础及其底座快速向基础周围传递,使得基础下形成大范围低温冻土。暖季,热管停止工作期间,由于基础埋设较浅,混凝土塔基良好的导热性能使得其周围浅层土体温度升温较快,量值基本与天然地表下同一深度接近,而基础下部深层地温则主要受热管作用控制,温度较低。在单一塔腿4根热管及50 a气温升高2.6℃背景下,-1.0℃、-1.5℃两种年平均地温条件下,桩基础下部多年冻土仍保持冻结状态,满足工程对于冻土地基热状况的要求。-0.5℃年平均地温条件下,运营后期桩基础周围土体季节融化深度已大于桩基埋深。在该地温条件下,通过热管-保温板复合措施的采用,可有效发挥热管的“冷却降温”及保温板的“隔热保冷”效能,在大幅减小基础周围土体的最大季节融化深度的同时降低锥柱式基础底部深层地温,进而满足工程需求。
    Abstract: The working period of thermosyphons and the thermal effect of concrete tower footing are determined using the in-situ measured data. A coupled heat transfer model among air, thermosyphon and soil is established considering heat transfer processes within the thermosyphon without adiabatic section. Based on the model, the heat transfer processes around the tower footing and the temporal variations of thermal regime around the tower footing are studied by numerical simulation under a climate warming scenario. The results indicate that in cold seasons when thermosyphon works, the soils around the thermosyphon are obviously colder than those far away, revealing a remarkable cooling effect. Meanwhile, clod energy from the thermosyphon flows quickly to the base of tower footing due to its larger thermal conductivity. As a consequence, extensive cold permafrost develops beneath the footing. While in warm seasons, the shallow soils around the tower footing warm quickly, but those beneath the tower footing are still colder due to the cooling effect of the thermosyphon. Under the scenario of climate warming, the soils beneath the tower footing installed with four thermosyphons still keep frozen in permafrost region with the mean annual ground temperatures of -1.0℃ and -1.5℃, meeting the need of the project. But for permafrost region with the mean annual ground temperature of -0.5℃, the maximum seasonally thawing depth around the tower footing is already larger than the buried-depth of the tower footing during the later period of operation. Using the combined method of thermosyphons and insulated boards, the maximum thawing depth around the tower footing can be diminished obviously and will be less than the buried-depth of the tower footing. And meanwhile, the deep soil temperatures beneath the tower footing will also be much lower.
  • [1] 俞祁浩, 刘厚健, 钱 进, 等. 青藏直流联网工程±500 kV输电线路的工程问题分析[J]. 工程地球物理学报, 2009, 6(6): 806-812. (YU Qi-hao, LIU Hou-jian, QIAN Jin, et al. Research on frozen engineering of Qinghai-Tibet 500 kV DC power transmission line[J]. Chinese Journal of Engineering Geophysics, 2009, 6(6): 806-812. (in Chinese))
    [2] 马巍, 刘端, 吴青柏. 青藏铁路冻土路基变形监测与分析[J]. 岩土力学 2008, 29(3): 571-579. (MA Wei, LIU Duan, WU Qing-bai. Monitoring and analysis of embankment deformation in permafrost regions of Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2008, 29(3): 571-579. (in Chinese))
    [3] 俞祁浩, 温 智, 丁燕生, 等. 青藏直流线路东土地基监测研究[J]. 冰川冻土, 2012, 34(5): 1165-1172. (YU Qi-hao, WEN Zhi, DING Yan-sheng, et al. Monitoring the tower foundation in the permafrost regions along the Qinghai-Tibet DC transmission line from Qinghai Province to Tibetan autonomous region[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1165-1172. (in Chinese))
    [4] INSTANES A. Infrastructure: buildings, support systems, and industrial facilities. In: arctic climate impact assessment[R]. Cambridge: Cambridge University Press, 2005.
    [5] 程国栋, 何 平. 多年冻土地区线性工程建设[J]. 冰川冻土, 2001, 23(3): 213-217. (CHENG Guo-dong, HE Ping. Linearity engineering in permafrost areas[J]. Journal of Glaciology and Geocryology, 2001, 23(3): 213-217. (in Chinese))
    [6] 马 巍, 程国栋, 吴青柏. 多年冻土地区主动冷却地基方法研究[J]. 冰川冻土, 2002, 24(5): 579-587. (MA Wei, CHENG Guo-dong, WU Qing-bai. Preliminary study on technology of cooling foundation in permafrost regions[J]. Journal of Glaciology and Geocryology, 2002, 24(5): 579-587. (in Chinese))
    [7] WU Qing-bai, LIU Yong-zhi, ZHANG Jian-ming. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China[J]. Permafrost and Periglacial Processes, 2002, 13(3): 199-205.
    [8] WU Qing-bai, NIU Fu-jun. Permafrost changes and engineering stability in Qinghai-Xizang Plateau[J]. Chinese Science Bulletin, 2012, 58: 1079-1084.
    [9] 吴青柏, 施 斌, 刘永智. 青藏公路沿线多年冻土与公路相互作用研究[J]. 中国科学(D辑), 2002, 32(6): 514-520. (WU Qing-bai, SHI Bin, LIU Yong-zhi. Interaction study of permafrost and highway along Qinghai-Xizang Highway[J]. Scientia Sinica Terrae, 2002, 32(6): 514-520. (in Chinese))
    [10] 金会军, 喻文兵, 陈友昌, 等. 多年冻土区输油管道工程中的(差异性)融沉和冻胀问题[J]. 冰川冻土, 2005, 27(3): 454-464. (JIN Hui-jun, YU Wen-bing, CHEN You-chang, et al. (Differential) Frost heave and thaw settlement in the engineering design and construction of oil pipelines in permafrost regions: a review[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 454-464. (in Chinese))
    [11] 马巍, 穆彦虎, 李国玉, 等. 多年冻土区铁路路基热状况对工程扰动及气候变化的响应[J]. 中国科学: 地球科学, 2013, 43(3): 478-489. (MA Wei, MU Yan-hu, LI Guo-yu, et al. Responses of embankment thermal regime to engineering activities and climate change along the Qinghai-Tibet Railway[J]. Scientia Sinica Terrae: Earth Science, 2013, 43(3): 478-489. (in Chinese))
    [12] 牛富俊, 马 巍, 吴青柏. 青藏铁路主要冻土路基工程热稳定性及主要冻融灾害[J]. 地球科学与环境学报, 2011, 33(2): 196-206. (NIU Fu-jun, MA Wei, WU Qing-bai. Thermal stability of roadbeds of the Qinghai-Tibet Railway in permafrost regions and the main freezing-thawing hazards[J]. Journal of Earth Science and Environment, 2011, 33(2): 196-206. (in Chinese))
    [13] MA Wei, MU Yan-hu, WU Qing-bai, et al. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2011, 67(2): 178-186.
    [14] GOERING D. Loft road extension: ACE & thermosyphon design features[J]. Alaskan Transpotation, 2003, 28(1): 1-4.
    [15] XU J F, GOERING D. Experimental validation of passive permafrost cooling systems[J]. Cold Regions Science and Technology, 2008: 283-297.
    [16] MCKENNA J K, BIGGAR K W. The rehabilitation of a passive-ventilated slab on grade foundation using horizontal thermosyphon[J]. Canadian Geotechnical Journal, 1998, 35(2): 684-691.
    [17] SMITH L B, GRAHAM J P, NIXON J F. Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1992, 29(2): 73-85.
    [18] BRADLEY G P, YAMARK E. Passive thermal stabilization of the bethel runway-a construction view[C]// Cold Regions Engineering Northern Resource Development Specialty Conference. Alberta, 1984: 221-228.
    [19] 丁靖康. 冻土地区热桩技术应用研究[D]. 兰州: 中铁西北研究院, 2002. (DING Jing-kang. Application of heat pipe in permafrost regions[D]. Lanzhou: Northwest Research Institute Co., Ltd of C.R.E.C, 2002. (in Chinese))
    [20] 章金钊. 热桩在青藏高原多年冻土地区涵洞工程中的应用[J]. 冰川冻土. 1995, 17(增刊): 96-100. (ZHANG Jin-zhao. Application of thermal pipe to the culvert engineering in permafrost region on Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1995, 17(S0): 96-100. (in Chinese))
    [21] 汪双杰, 陈建兵, 李仙虎. 多年冻土区公路修筑技术研究与工程实践[J]. 冰川冻土, 2009, 31(2): 384-392.(WANG Shuang-jie, CHENG Jian-bing, LI Xian-hu. The highway construction technology in permafrost regions: research and engineering practice[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 384-392. (in Chinese))
    [22] 程红彬. 青藏铁路冻土区低温热管应用关键技术研究[D]. 兰州: 中国科学院研究生院, 2007. (CHENG Hong-bin. Study on the key technology of application of thermosyphon along the Qinghai-Tibet Railway in permafrost regions[D]. Lanzhou: University of the Chinese Academy of Sciences, 2007. (in Chinese))
    [23] 谭青海, 童武, 吴海洋, 等. 热棒技术在青藏直流工程中的应用[J]. 华北电力技术, 2012(2): 16-19. (TAN Qing-hai, TONG Wu, WU Hai-yang, et al. Application of hot rod technology in Qinghai-Tibet DC Project[J]. North China Electric Power, 2012(2): 16-19. (in Chinese))
    [24] HOLMAN J P. Heat transfer[M]. 北京: 机械工业出版社, 2011. (HOLMAN J P. Heat transfer[M]. Beijing: China Machine Press, 2011. (in Chinese))
    [25] 杨世铭. 传热学[M]. 北京: 高等教育出版社, 2010. (YANG Shi-ming. Heat transfer[M]. Beijing: High Education Press, 2010. (in Chinese))
    [26] 张明义. 多年冻土区气冷路基长期热稳定性研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2007. (ZHANG Ming-yi. Study on long-term thermal stability of air-cooled subgrade in permafrost regions[D]. Lanzhou: Graduate University of the Chinese Academy of Sciences, 2007 (in Chinese))
    [27] 赖远明, 张明义, 李双洋. 寒区工程理论与应用[M]. 北京: 科学出版社, 2009. (LAI Yuan-ming, ZHANG Ming-yi, LI Shuang-yang. Theory and application of cold regions engineering[M]. Beijing: Science Press, 2009. (in Chinese))
    [28] 陈赵育, 李国玉, 穆彦虎, 等. 不同升温模式下冻土区装配式基础热稳定性研究[J]. 地震工程学报, 2013, 35(4): 877-884. (CHEN Zhao-yu, LI Guo-yu, MU Yan-hu, et al. Research on thermal stability of fabricated foundation with different warming patterns in permafrost regions[J]. China Earthquake Engineering Journal, 2013, 35(4): 877-884. (in Chinese))
    [29] 陈赵育, 李国玉, 穆彦虎, 等. 入模温度和水化热对青藏直流联网工程冻土桩基温度特性影响研究[J]. 冰川冻土, 2014, 36(4): 818-827. (CHEN Zhao-yu, LI Guo-yu, MU Yan-hu, et al. Impact of molding temperature and hydration heat on thermal properties of pile foundation in permafrost regions along the Qinghai-Tibet DC interconnection project[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 818-827. ((in Chinese)))
    [30] WU Jun-jie, MA Wei, SUN Zhi-zhong, et al. In-situ study on cooling effect of the two-phase closed thermosyphon and insulation combinational embankment of the Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2010, 60(2): 234-244.
    [31] 周勇, 董献付, 张 波, 等. 柴达尔—木里铁路冻土路基热棒冷却效果的试验研究[J]. 冰川冻土, 2009, 31(4): 688-694. (ZHOU Yong, DONG Xian-fu, ZHANG Bo, et al. Experimental study on the cooling effect of heat pipe along the Chaidaer-Muli Railway[J]. Journal of Glaciology and Geocryology, 2009, 31(4): 688-694. (in Chinese))
    [32] 金龙. 多年冻土区热管路基降温效能分析及设计方法研究[D]. 兰州: 中国科学院研究生院, 2013. (JING Long. Study on cooling effect and design method of thermosyphon embankment in permafrost regions[D]. Lanzhou: University of the Chinese Academy of Sciences, 2013. (in Chinese))
    [33] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001. (XU Xue-zu, WANG Jia-cheng, ZHANG Li-xin. Physics of frozen soil[M]. Beijing: Science Press, 2001. (in Chinese))
    [34] 朱林楠. 高原冻土区不同下垫面的附面层研究[J]. 冰川冻土, 1988, 10(1): 8-14. (ZHU Lin-nan. Study of the adherent layer on different types of ground in permafrost regions on the Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1988, 10(1): 8-14. (in Chinese))
    [35] JIN Hun-jun, ZHAO Lin, WANG Shao-ling, et al. Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway[J]. Science in China (Series D): Earth Sciences, 2006, 49(11): 1170-1183.
    [36] 盛 煜, 温 智, 马 巍. 青藏铁路北麓河试验段路基保温材料处理措施初步分析[J]. 岩石力学与工程学报, 2003, 22(增刊2): 2659-3663. (SHENG Yu, WEN Zhi, MA Wei. Preliminary analysis on insulation treatment of embankment at beilhehe test section of Qinghai-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2659-3663. (in Chinese))
    [37] 温 智, 盛 煜, 马 巍, 等. 保温法保护多年冻土的长期效果分析[J]. 冰川冻土, 2006, 28(5): 760-765. (WEN Zhi, SHENG Yu, MA Wei, et al. Long term effect of insulation on permafrost on the Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 760-765. (in Chinese))
  • 期刊类型引用(6)

    1. 蒋承辉. 基于BOTDA的光纤位移传感器在建筑基坑沉降监测中的实验研究. 企业科技与发展. 2025(01): 98-101 . 百度学术
    2. 吴哲辉,何宁,姜彦彬,孔洋,槐伟. 堆石坝内部二维变形一体化分布式监测技术试验研究. 水利信息化. 2025(02): 56-63 . 百度学术
    3. 管翰林,蒋陵,王驭扬,张灿. 基于DOFS技术的电力光缆多维度故障预警研究. 电力电子技术. 2025(05): 78-81+105 . 百度学术
    4. 赵建勋,高冰,高丽娟. 分布式光纤传感技术下架空输变电线路监测. 电子设计工程. 2025(11): 72-76 . 百度学术
    5. 黄惇汉. 基于分布式光纤传感技术的车辆撞击道路护栏检测研究. 运输经理世界. 2024(22): 122-124 . 百度学术
    6. 马刚,艾志涛,郭承乾,李少林,陈华,周伟. 高土石坝变形监测研究进展. 水利学报. 2024(10): 1174-1186 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  314
  • HTML全文浏览量:  1
  • PDF下载量:  319
  • 被引次数: 6
出版历程
  • 收稿日期:  2014-01-12
  • 发布日期:  2014-10-19

目录

    /

    返回文章
    返回