• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑加速效应的多孔介质中颗粒三维迁移模型研究

陈星欣, 白冰, 俞缙, 蔡奇鹏

陈星欣, 白冰, 俞缙, 蔡奇鹏. 考虑加速效应的多孔介质中颗粒三维迁移模型研究[J]. 岩土工程学报, 2014, 36(10): 1888-1895. DOI: 10.11779/CJGE201410017
引用本文: 陈星欣, 白冰, 俞缙, 蔡奇鹏. 考虑加速效应的多孔介质中颗粒三维迁移模型研究[J]. 岩土工程学报, 2014, 36(10): 1888-1895. DOI: 10.11779/CJGE201410017
CHEN Xing-xin, BAI Bing, YU Jin, CAI Qi-peng. Three-dimensional modeling of particle transport in porous media considering accelerated effects[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1888-1895. DOI: 10.11779/CJGE201410017
Citation: CHEN Xing-xin, BAI Bing, YU Jin, CAI Qi-peng. Three-dimensional modeling of particle transport in porous media considering accelerated effects[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1888-1895. DOI: 10.11779/CJGE201410017

考虑加速效应的多孔介质中颗粒三维迁移模型研究  English Version

基金项目: 国家自然科学基金项目(51308235,51279002,51374112); 华侨大学科研基金项目(13BS304)
详细信息
    作者简介:

    陈星欣(1984- ),男,讲师、博士,主要从事环境岩土工程方面的教学和科研。E-mail: chenxx@hqu.edu.cn。

Three-dimensional modeling of particle transport in porous media considering accelerated effects

  • 摘要: 基于已有的颗粒一维迁移模型,建立一个考虑加速效应的颗粒三维迁移模型。通过Laplace变换和Fourier变换,给出点源和面源形式下的颗粒瞬时注入和周期形式注入问题的解析表达式,分析了点源瞬时注入情况下时间、距离、沉积系数、弥散系数等的影响机理。研究结果表明:随着时间增大,迁移颗粒浓度峰值逐渐减小,并且浓度峰值所对应的x坐标值逐渐增大。其次,浓度等值线在x-y平面上呈椭圆形状,在x方向上靠近颗粒注入口的等值线排列较密,远离注入口的等值线排列较疏。随着时间增大,低浓度等值线的范围逐渐向四周扩大,高浓度的等值线的范围逐渐缩小。另外,沉积系数越大,浓度等值线的范围越小。然而,随着x方向的弥散系数增大,等值线在x方向上逐渐向两侧拉长,而等值线在y方向上的范围逐渐缩小。
    Abstract: Based on a one-dimensional particle transport model, a theoretical model considering accelerated transport effects of particles is established. General solutions are derived with the help of the Laplace and Fourier transforms. According to the general solutions, specific solutions (instantaneously injected and periodically injected) are presented for point and areal inflow regions. The analytical solution for point source under instantaneous injection is taken as an example of specific solutions. A detailed discussion of the effect of time, distance, deposition and dispersion on particle transport is conducted. The studies show that the peak values of concentration decrease and the corresponding distance increases with the increasing time. Furthermore, the concentration contours exhibit ellipses on x-y plane, those near the particle inlet in the x-direction are arranged densely, and those far from the particle inlet are arranged sparsely. The range of low concentration contours increases and the range of high-concentration contours decreases with the increasing time. Besides, the concentration contours decrease with the increasing deposition rate. However, the range of concentration contours decreases with the increasing deposition rate. The contours in the x-direction increase and those in the y-direction decrease with the increasing Dx.
  • [1] NIEHREN S, KINZELBACH W. Artificial colloid tracer tests: development of a compact on-line microsphere counter and application to soil column experiments[J]. Journal of Contaminant Hydrology, 1998, 35(1/2/3): 249-259.
    [2] PRONK M, GOLDSCHEIDER N, ZOPFI J. Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system[J]. Hydrogeology Journal, 2006, 14(4): 473-484.
    [3] CREBER S A, PINTELON T R R, JOHNS M L. Quantification of the velocity acceleration factor for colloidal transport in porous media using NMR[J]. Journal of Colloid and Interface Science, 2009, 339(1): 168-174.
    [4] PANFILOV M, PANFILOVA I, STEPANYANTS Y. Mechanisms of particle transport acceleration in porous media[J]. Transport in Porous Media, 2008, 74(1): 49-71.
    [5] SUBRAMANIAN S K, LI Y, CATHLES L M. Assessing preferential flow by simultaneously injecting nanoparticle and chemical tracers[J]. Water Resources Research, 2013, 49(1): 29-42.
    [6] GÖPPERT N, GOLDSCHEIDER N. Solute and colloid transport in karst conduits under low- and high-flow conditions[J]. Ground Water, 2008, 46(1): 61-68.
    [7] MASSEI N, LACROIX M, WANG H Q, et al. Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters[J]. Journal of Contaminant Hydrology, 2002, 57(1/2): 21-39.
    [8] 陈星欣, 白 冰. 重力对饱和多孔介质中颗粒输运特性的影响[J]. 岩土工程学报, 2012, 34(9): 1661-1667. (CHEN Xing-xin, BAI Bing. Effect of gravity on transport of particles in saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1661-1667.(in Chinese))
    [9] WEISBROD N, MERON H, WALKER S, et al. Virus transport in a discrete fracture[J]. Water Research, 2013, 47(5): 1888-1898.
    [10] SCHEIBE T D, WOOD B D. A particle-based model of size or anion exclusion with application to microbial transport in porous media[J]. Water Resources Research, 2003, 39(4): 1080-1089.
    [11] SANTOS A, BEDRIKOVETSKY P G. Population balance model for deep bed filtration with pore size exclusion[J]. Journal of Computational and Applied Mathematics, 2005, 23(2/3): 1-26.
    [12] JAMES S C, CHRYSIKOPOULOS C V. Effective velocity and effective dispersion coefficient for finite-sized particles flowing in a uniform fracture[J]. Journal of Colloid and Interface Science, 2003, 263(1): 288-295.
    [13] BRADFORD S A, MORALES V L, ZHANG W, et al. Transport and fate of microbial pathogens in agricultural settings[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(8): 775-893.
    [14] 刘泉声, 赵 军, 张程远. 考虑尺寸排除效应颗粒迁移模型的建立[J]. 岩土力学, 2012, 33(8): 2265-2268, 2276. (LIU Quan-sheng, ZHAO Jun, ZHANG Cheng-yuan. Establishment of particulate transport: size exclusion effect[J]. Rock and Soil Mechanics, 2012, 33(8): 2265-2268, 2276. (in Chinese))
    [15] CARSLAW H S, JAEGER J D. Conduction of heat in solids[M]. 2nd ed. London: Oxford University Press, 1959.
    [16] ABRAMOWITZ M, STEGUN I A. Handbook of mathematical functions with formulas, graphs, and mathematical tables. National bureau of standards applied mathematics series 55[M]. 10th ed. New York: John Wiley and Sons, 1972.
    [17] SPIEGEL M R. Theory and problems of Laplace transforms[M]. New York: McGraw-Hill, 1965.
    [18] VAN GENUCHTEN M T, ALVES W. Analytical solutions of the one-dimensional convective-dispersive solute transport equation[M]. U.S. Department of Agriculture Technical Bulletin No. 1661, 1982.
    [19] GRADSHTEYN I S, RYZHIK I M. Table of integral, series, and products[M]. New York: Elsevier, 1980.
    [20] SIM Y, CHRYSIKOPOULOS C V. Three dimensional analytical models for virus transport in saturated porous media[J]. Transport in Porous Media, 1998, 30(1): 87-112.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-30
  • 发布日期:  2014-10-19

目录

    /

    返回文章
    返回