Analytical method for insulation layer thickness of highway tunnels with multilayer dielectric in cold regions
-
摘要: 新疆天山的玉希莫勒盖隧道处于高海拔季节性冻土地区,为防止冻害的发生,需要对所需保温层厚度进行研究。针对这一问题建立计算模型,采用Laplace积分变换的方法得到了由于保温作用而没有相变发生时寒区隧道温度场的解析分析方法;通过与stehfest方法对比分析,基于高斯正交法则和快速Fourier变换的Den Iseger方法具有更好的稳定性和准确性,采用该数值反演方法进行Laplace逆变换的求解。根据对玉希莫勒盖隧道的分析表明,保温层、衬砌与围岩中的温度都随着大气温度呈简谐振动;现场采用的5 cm厚保温层内外温差达9.63℃,不能保证该隧道围岩不发生冻胀现象;要保证其在设计年限内不发生冻胀所需要的最小保温层厚度为27 cm;通过对相关物理参数的分析表明:对流换热系数对固体介质的表面温度的最值影响较大,但对保温层厚度的影响较小;随着年平均气温的升高所需保温层的厚度越小,保证的安全年限越长,厚度也越大;随着地层温度的升高,所需保温层厚度逐渐减小;最后对年平均气温和地层温度的不同组合情况进行拟合分析,得出保温层厚度与这两因素的相关关系,可为该地区其他隧道的设计提供参考。
-
关键词:
- 寒区隧道 /
- 保温层厚度 /
- Laplace积分变换 /
- 温度场 /
- 解析解 /
- Den Iseger方法
Abstract: Yuximolegai tunnel at Tianshan Mountain of Xinjiang is built in a seasonal frozen region. The thickness of insulation layer needs to be determined against frozen damage. For the solution to this problem, a model is established. When the insulation layer has good effect and no phase change occurs, the Laplace integral transform is employed to solve the temperature field of cold-region tunnels. Compared with the stability and accuracy of the stehfest method, those of the Den Iseger method, which is based on the Gaussian quadrature rule and the fast Fourier transform, are better. Thus, this method is used to solve the inversion of Laplace transform. Based on the results of Yuximolegai tunnel, it is shown that the temperatures of the insulation layer, the linings and the surrounding rocks follow the law of simple harmonic vibration with air temperature. Since the temperature difference between the two edges of 5 cm-thick insulation layer attains 9.63℃, it can not protect the surrounding rock against frozen heave. If the tunnel needs to be protected well in design period, the thickness of insulation layer should be 27 cm at least. Based on the parameter analysis, although the influence of convective heat transfer coefficient on solid surface is large, the influence on thickness of the insulation layer is limited. The insulation layer should decrease with the increase of the annual mean temperature and increase with the safe time of tunnels. With the increase of ground temperature, the thickness of insulation layer reduces gradually. Finally, by analyzing the annual mean temperature and ground temperature, the relationship between this two factors and the thickness of insulation layer is established, which may provide the basis for the design of other tunnels in this region. -
[1] 张学富, 喻文兵, 刘志强. 寒区隧道渗流场和温度场耦合问题的三维非线性分析[J]. 岩土工程学报, 2006, 28(9): 1095-1100. (ZHANG Xue-fu, YU Wen-bing, LIU Zhi-qiang. Three-dimensional nonlinear analysis for coupled problem of seepage field and temperature field of cold regions tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1095-1100. (in Chinese)) [2] BONACINA C, COMINI G, FASANO A, et al. Numerical solution of phase-change problems[J]. Int J Heat Mass Transfer, 1973, 16(6): 1852-1832. [3] TAKUMI K, TAKASHI M, KOUICHI F. An estimation of inner temperature at cold region tunnel for heat insulator design[J]. Journal of Structural Engineering (A), 2008, 54(A): 32-38. [4] LAI Yuan-ming, LIU Song-yu, WU Zi-wang, et al. Approximate analytical solution for temperature fields in cold regions circular tunnels[J]. Cold Regions Science and Technology, 2002, 13(4): 43-49. [5] 张学富, 赖远明, 喻文兵, 等. 寒区隧道温度场三维空间非线性分析[J]. 土木工程学报, 2004, 37(2): 47-53. (ZHANG Xue-fu, LAI Yuan-ming, YU Wen-bing, et al. Nonlinear analysis for the three-dimensional temperature fields in cold region tunnels[J]. Journal of Civil Engineering, 2004, 37(2): 47-53. (in Chinese)) [6] 张 耀, 何树生, 李靖波. 寒区有隔热层圆形隧道温度场解析计算[J]. 冰川冻土, 2009, 31(1): 113-118. (ZHANG Yao, HE Shu-sheng, LI Jing-bo. Analytic solutions for the temperature fields of a circular tunnel with insulation layer in cold region[J]. Journal of glaciology and geocryology, 2009, 31(1): 113-118. (in Chinese)) [7] 冯强, 蒋斌松. 寒区隧道温度场Laplace变换解析计算[J]. 采矿与安全工程学报, 2012, 29(3): 391-395. (FENG Qiang, JIANG Bin-song. Analytical calculation on temperature field of tunnels in cold region by laplace integral transform[J]. Journal of Mining and Safety Engineering, 2012, 29(3): 391-395. (in Chinese)) [8] 夏才初, 张国柱, 肖素光. 考虑衬砌和隔热层的寒区隧道温度场解析解[J]. 岩石力学与工程学报, 2010, 29(9): 1767-1773. (XIA Cai-chu, ZHANG Guo-zhu, XIAO Su-guang. Analytical solution to temperature fields of tunnel in cold region considering lining and insulation layer[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1767-1773. (in Chinese)) [9] TOUTAIN J, BATTAGLIA J L, et al. Numerical inversion of laplace transform for time resolved thermal characterization experiment[J]. Journal of Heat Transfer, 2011, 133(4): 1-3. [10] Peter den Iseger. Numerical transform inversion using Gaussian quadrature[J]. Probability in Engineering and Informational Sciences, 2006, 20(1): 1-44. [11] 刘利强. Laplace反变换的一种数值算法[J]. 内蒙古工业大学学报, 2002, 21(1): 47-49. (LIU Li-qiang. The inverse Laplace transform in numerical form[J]. Journal of Inner Mongo Lia University of Technology, 2002, 21(1): 47-49. (in Chinese)) [12] 王照亮, 张克舫, 李华玉. 一种求解复合圆筒壁非稳态导热问题的新方法[J]. 石油大学学报, 2005, 29(2): 89-92. (WANG Zhao-liang, ZHANG Ke-fang, LI Hua-yu. A new approximate solution for multiple-layer cylindrical walls of unsteady-state heat conduction[J]. Journal of the University of Petroleum, China, 2005, 29(2): 89-92. (in Chinese)) [13] 谢鸿政, 杨枫林. 数学物理方程[M]. 北京: 科学出版社,2008: 272-287. (XIE Hong-zheng, YANG Feng-lin. Differential equations in mathematical physics[M]. Beijing: Science Press, 2008: 272-287. (in Chinese)) [14] 于 涛. 数学物理方程与特殊函数[M]. 北京: 科学出版社, 2008. (YU Tao. Differential equations in mathematical physics and special function[M]. Beijing: Science Press, 2008. (in Chinese)) -
期刊类型引用(25)
1. 洪嘉伟,张彬,潘道明. 隧道注浆圈渗透系数对邻侧隧道的影响. 交通科技与管理. 2025(01): 147-151 . 百度学术
2. 胡颢,王超林,黄小龙,党爽,刘腾龙. 岩溶隧道对地下水环境影响分析及涌水量预测研究. 贵州大学学报(自然科学版). 2024(02): 103-109+124 . 百度学术
3. 于勇,刘文骏,傅鹤林,胡凯巽. 超高水压超大埋深组合工法水下隧道连接段泄水降压研究. 隧道建设(中英文). 2024(04): 663-672 . 百度学术
4. 樊浩博,陈宏文,赵东平,朱正国,赵梓宇,朱永全,高新强. 在役岩溶隧道衬砌水压分布及预警控制标准研究. 岩土力学. 2024(07): 2153-2166 . 百度学术
5. 魏福成,汪镇,周凤玺. 层状地质条件下注浆模型渗流场解析解. 科学技术与工程. 2024(29): 12723-12733 . 百度学术
6. 魏荣华,张康健,张志强. 铁路隧道深埋水沟防排水技术参数优化研究. 现代隧道技术. 2024(05): 183-192 . 百度学术
7. 雒少江,丁卫华,薛海斌,李玉波,严广艺,宋常贵,张东旭. 基于宏观地质模型分类的深埋输水隧洞衬砌外水压力研究. 中国农村水利水电. 2024(12): 177-184+192 . 百度学术
8. 戚海棠,任旭华,张继勋. 基于井流理论的隧洞外水压力解析计算方法研究. 水力发电. 2023(04): 29-35+74 . 百度学术
9. 黄威,孙云,张建平,王耘梓,张延杰,徐卫亚. 深埋隧洞高外水压力研究进展. 三峡大学学报(自然科学版). 2023(05): 1-11 . 百度学术
10. 雷刚,杨凌武,胡明华,施芸,盛磊. 基于实时扫描的隧道自动开槽机器人电气系统设计. 制造业自动化. 2023(11): 107-110 . 百度学术
11. 王新越,王如宾,王丹,向天兵,王鹏,黄威,张建平,徐卫亚. 滇中引水松林隧洞高外水压力作用数值模拟分析. 隧道与地下工程灾害防治. 2023(04): 72-80 . 百度学术
12. 傅鹤林,安鹏涛,成国文,王仁健,李鲒,余小辉. 考虑注浆圈与复合衬砌时体外排水方式设计. 湖南大学学报(自然科学版). 2022(01): 174-182 . 百度学术
13. 傅鹤林,安鹏涛,成国文,李鲒,余小辉,陈龙. 富水区隧道环向盲管间距优化分析. 现代隧道技术. 2022(02): 20-27 . 百度学术
14. 黄世光,杨艳娜,范全忠,黄靖宇,余磊. 隧道堵水限排设计参数变化规律试验研究. 现代隧道技术. 2022(03): 201-210 . 百度学术
15. 任世林. 四线临海隧道开挖渗流演变及参数影响分析. 铁道科学与工程学报. 2022(07): 1985-1996 . 百度学术
16. 高国庆,齐国庆,陈仲达,刘剑锋. 基于GMS的红崖山隧道渗流场分析与涌水量预测. 水利与建筑工程学报. 2022(04): 142-148+211 . 百度学术
17. 张治国,程志翔,陈杰,吴钟腾,李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验. 隧道与地下工程灾害防治. 2022(03): 77-91 . 百度学术
18. 黄文华,张云. 基于浆液扩散的软弱围岩隧道注浆加固效果研究. 公路. 2021(08): 355-359 . 百度学术
19. 刘世伟,赵书争,付迪,赵强,朱泽奇. 长期渗漏水条件下海陆相浅埋盾构隧道隧顶水土荷载计算. 岩石力学与工程学报. 2021(10): 2149-2160 . 百度学术
20. 袁鸿鹄,刘勇,顾小明,张琦伟,李宏恩,孙洪升,杨良权. 冬奥会综合管廊绿色减排数值模拟分析. 水利水电技术(中英文). 2021(S2): 326-331 . 百度学术
21. 李林毅,阳军生,王树英,包德勇,高超. 体外排水方式在隧道工程中的研究及应用. 铁道学报. 2020(10): 118-126 . 百度学术
22. 张进. 富水环境下隧道地下水限量排放的衬砌外水压力分析. 四川建筑. 2020(05): 96-98+102 . 百度学术
23. 和晓楠,周晓敏,郭小红,徐衍,马文著. 深埋隧道注浆加固围岩非达西渗流场及应力场解析. 中国公路学报. 2020(12): 200-211 . 百度学术
24. 杨栋. 松散区盾构隧道注浆控制技术研究. 现代交通技术. 2020(06): 30-34 . 百度学术
25. 关振长,任璐瑶,何亚军,胡宏林. 山岭隧道渗流及衬砌等效渗透系数的实用计算. 水利与建筑工程学报. 2020(06): 52-56 . 百度学术
其他类型引用(20)