• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同固结路径温州黏土固有不排水强度性状试验研究

史剑, 钱森, 曾玲玲, 洪振舜

史剑, 钱森, 曾玲玲, 洪振舜. 不同固结路径温州黏土固有不排水强度性状试验研究[J]. 岩土工程学报, 2014, 36(9): 1674-1679. DOI: 10.11779/CJGE201409014
引用本文: 史剑, 钱森, 曾玲玲, 洪振舜. 不同固结路径温州黏土固有不排水强度性状试验研究[J]. 岩土工程学报, 2014, 36(9): 1674-1679. DOI: 10.11779/CJGE201409014
SHI Jian, QIAN Sen, ZENG Ling-ling, HONG Zhen-shun. Undrained shear behaviors of reconstituted Wenzhou clay under different consolidation stress paths[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1674-1679. DOI: 10.11779/CJGE201409014
Citation: SHI Jian, QIAN Sen, ZENG Ling-ling, HONG Zhen-shun. Undrained shear behaviors of reconstituted Wenzhou clay under different consolidation stress paths[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1674-1679. DOI: 10.11779/CJGE201409014

不同固结路径温州黏土固有不排水强度性状试验研究  English Version

基金项目: 国家自然科学基金项目(41372309,41172240)
详细信息
    作者简介:

    史 剑(1988- ),男,博士,主要从事土的基本特性与本构关系研究。Email: scorpiojian@126.com。

  • 中图分类号: TU411

Undrained shear behaviors of reconstituted Wenzhou clay under different consolidation stress paths

  • 摘要: 为研究初始条件和应力状态对重塑黏土固有不排水强度性状的影响,采用应力路径三轴仪对室内制备的温州黏土进行一系列不同固结路径下的三轴固结不排水剪切试验。通过室内试验研究探讨温州黏土不同固结路径下不同平均有效应力固结后三轴不排水剪切应力应变关系和不排水强度特性;引入不同平均有效应力p’下的孔隙指数Iv与不排水强度比R*su=Su/ p’,分析不同固结路径下不排水强度Su的变化规律,并与Chandler提出的固有强度线ISuL进行比较分析。结果表明:相同平均有效应力p’下,不同固结路径下不排水剪切强度Su和不排水强度比R*su=Su/ p’随固结路径的变化而变化;当不排水强度比Su/ p’=0.33时,孔隙指数Iv与固结不排水强度Su之间的关系与Chandler的固有强度线ISuL一致。
    Abstract: To investigate the effects of the initial conditions and stress states on the intrinsic undrained strength behaviors of reconstituted clay, a series of consolidated undrained triaxial compression tests are performed on reconstituted Wenzhou clay under different consolidation conditions. The undrained shear stress-strain relationship and undrained strength are investigated. The void index Iv and the undrained strength ratios R*su=Su/ p’ with different mean effective stresses p’ are used to compare the undrained strength Su under different consolidation conditions with the Chandler intrinsic strength line ISuL. The results indicate that the undrained shear stress-strain curves change with the consolidation stress paths under the same mean effective stresses p’. The undrained shear strengths and undrained strength ratios R*su=Su/ p’ are also greatly affected by the consolidation stress paths. When Su/ p’=0.33, the relationship between the void index Iv and the undrained strength Su is identical to the Chandler intrinsic strength line ISuL.
  • [1] 曹宇春, 杨建辉. 基于有效固结应力法确定结构性黏性土不排水抗剪强度[J]. 岩土力学, 2013, 34(11): 3085-3090. (CAO Yu-chun, YANG Jian-hui. Undrained shear strength determination of structured clays based on effective consolidation stress method [J]. Rock and Soil Mechanics, 2013, 34(11): 3085-3090. (in Chinese))
    [2] LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467-488.
    [3] BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378.
    [4] COTECCHIA F, CHANDLER R J. A general framework for the mechanical behaviour of clays[J]. Géotechnique, 2000, 50(4): 431-447.
    [5] CHANDLER R J. Clay sediments in depositional basin: the geotechnical cycle[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2000, 33(1): 7-39.
    [6] HONG Z S, LIU S Y, SHEN S L, Negami T. Comparison in undrained shear strength between undisturbed and remolded Ariake clays[J]. Journal of Geotechnical and Geoenviron- mental Engineering, ASCE, 2006, 132(2): 272-275.
    [7] HONG Z S, ZENG L L, CUI Y J, et al. Compression behavior of natural and reconstituted clays[J]. Géotechnique, 2012, 62(4): 291-301.
    [8] HONG Z S, YIN J, CUI Y J. Compression behaviour of reconstituted soils at high initial water contents[J]. Géotechnique, 2010, 60(9): 691-700.
    [9] HONG Z S, BIAN X, CUI Y J, GAO Y F, ZENG L L. Effect of initial water content on undrained shear behavior of reconstituted clays[J]. Géotechnique, 2013, 63(6): 441-450.
    [10] CARRIER W D, BECKMAN J F. Correlations between index tests and the properties of remoulded clays[J]. Géotechnique, 1984, 34(2): 211-228.
    [11] 倪钧钧. 初始含水率对固有强度线影响规律的试验研究[D]. 南京: 河海大学, 2013. (NI Jun-jun. Experimental study on the effect of initial water content on intrinsic strength line[D]. Nanjing: Hohai University, 2013. (in Chinese))
    [12] MESRI G, ALI S. Undrained shear strength of a glacial clay over consolidated by desiccation[J]. Géotechnique, 1999, 49(2): 181-198.
    [13] YOICHI W, TAKASHI T, KAKUICHIRO A. Undrained shear strength of pleistocene clay in osaka bay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 216-226.
    [14] MAYNE P W. Stress anisotropy effects on clay strength[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(3): 355-366.
    [15] MESRI G. Discussion on “New design procedure for stability of soft clays”[J]. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(4): 409-412.
    [16] MESRI G. A reevaluation of S u(mob) = 0.22 σ ’ p using laboratory shear tests[J]. Canadian Geotechnical Journal, 1989, 26(1): 162-164.
    [17] NAKASE A, KAMEI T. Undrained shear strength anisotropy [J]. Soils and Foundations, 1983, 23(1): 91-101.
    [18] ALLMAN M A, ATKINSON J H. Mechanical properties of reconstituted Bothkennar soil[J]. Géotechnique, 1992, 42(2): 289-301.
    [19] CALLISTO L, RAMPELLO S. An interpretation of structural degradation for three natural clays[J]. Canadian Geotechnical Journal, 2004, 41(3): 392-407.
    [20] 王立忠, 沈恺伦. K 0 固结结构性软黏土的本构模型[J]. 岩土工程学报, 2007, 29(4): 496-504. (WANG Li-zhong, SHEN Kai-lun. A constitutive model of K 0 consolided structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 496-504. (in Chinese))
    [21] 曾玲玲, 洪振舜, 刘松玉. 考虑固结路径影响的天然沉积土不排水剪切试验研究[J]. 东南大学学报, 2012, 42(4):744-748. (ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu. Experimental study on undrained shear behavior of natural clays under various consolidation stress paths [J]. Journal of Southeast University, 2012, 42(4): 744-748. (in Chinese))
    [22] 曾玲玲, 洪振舜, 刘松玉, 等. 应力路径对天然沉积土压缩特性影响的试验研究[J]. 岩土工程学报, 2012, 34(7): 1250-1255. (ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu, et al. Experimental study on different compression behavior of natural clays caused by various stress paths [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1250-1255. (in Chinese))
    [23] JAMIOLKOWSKI M, LADD C C, GERMAINE J T, LANCELLOTTA R. New developments in field and laboratory testing of soils[C]// Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985: 57-153.
    [24] OHTA H, NISHIHARA A. Anisotropy of undrained shear strength of clays under axi-symmetric loading conditions[J]. Soils and Foundations, 1985, 25(2): 78-86.
    [25] 姜洪伟, 赵锡宏. K 0 固结粘土各向异性不排水剪强度研究[J]. 岩土力学, 1997, 18(2): 1-7. ((JIANG Hong-wei, ZHAO Xi-hong. Study on anisotropic undrained shear strength of K 0 -consolidated clays[J]. Rock and Soil Mechanics, 1997, 18(2): 1-7. (in Chinese))
    [26] CALLISTO L, CALABRESI G. Mechanical behavior of a natural soft clay[J]. Géotechnique, 1998, 48(4): 495-513.
    [27] BALASUBRAMANIAM A S, HANDALI S, WOOD D M. Pore pressure: stress ratio relationship for soft bangkok clay[J]. Soils and Foundations, 1992, 32(1): 117-131.
计量
  • 文章访问数:  336
  • HTML全文浏览量:  4
  • PDF下载量:  466
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-19
  • 发布日期:  2014-09-21

目录

    /

    返回文章
    返回