• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

深海能源土剪切带形成机理离散元分析

蒋明镜, 彭镝, 申志福, 张望城, 朱方园

蒋明镜, 彭镝, 申志福, 张望城, 朱方园. 深海能源土剪切带形成机理离散元分析[J]. 岩土工程学报, 2014, 36(9): 1624-1630. DOI: 10.11779/CJGE201409008
引用本文: 蒋明镜, 彭镝, 申志福, 张望城, 朱方园. 深海能源土剪切带形成机理离散元分析[J]. 岩土工程学报, 2014, 36(9): 1624-1630. DOI: 10.11779/CJGE201409008
JIANG Ming-jing, PENG Di, SHEN Zhi-fu, ZHANG Wang-cheng, ZHU Fang-yuan. DEM analysis on formation of shear band of methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1624-1630. DOI: 10.11779/CJGE201409008
Citation: JIANG Ming-jing, PENG Di, SHEN Zhi-fu, ZHANG Wang-cheng, ZHU Fang-yuan. DEM analysis on formation of shear band of methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1624-1630. DOI: 10.11779/CJGE201409008

深海能源土剪切带形成机理离散元分析  English Version

基金项目: 国家自然科学基金国家杰出青年科学基金项目(51025932)
详细信息
    作者简介:

    蒋明镜(1965- ),男,教授,博士生导师,国家杰出青年基金获得者,主要从事天然结构性黏土、砂土、非饱和土、太空土和深海能源土宏观微观试验、本构模型和数值分析研究。E-mail: mingjing.jiang@tongji.edu.cn。

  • 中图分类号: TU43;P744

DEM analysis on formation of shear band of methane hydrate bearing soils

  • 摘要: 天然气水合物的分解开采过程将会劣化深海能源土的力学性能,从而引发一系列岩土工程问题。因此,要实现天然气水合物的安全开采,需要对能源土的强度和变形特性开展研究。结合深海能源土微观胶结模型,通过平面应变双轴试验的离散元模拟,研究了深海能源土剪切带形成机理以及剪切带内外的宏微观变量特征。结果表明:水合物胶结提升了深海能源土的强度,且使其呈现出明显的应变软化特性;剪切带在峰值应力后开始产生,伴随着胶结的大量破坏以及各宏微观变量的局部化;剪切带内外各宏微观变量差异明显,随着轴向应变的增加,土体微观结构也随之发生变化。
    Abstract: Methane hydrate (MH) decomposition and mining will worsen the mechanical behavior of methane hydrate bearing soil (MHBS) and cause a series of geotechnical problems. Therefore, in order to facilitate safe exploitation of MH, it is crucial to understand the strength and deformation characteristics of MHBS. Based on the bond model of MHBS, the distinct element method (DEM) is used in planar biaxial compression tests to analyze the formation of shear band as well as some micro and macro variables of MHBS within and outside the shear band. The results show that methane hydrate increases the strength of MHBS and leads to strain-softening behavior; the shear band is fully developed after the peak stress, accompanied by massive bond breakage and localization of other micro variables; the micro and macro variables within and outside the shear band differ. Besides, with the increase of axial strain, the micro structure of MHBS changes.
  • [1] 肖 俞, 蒋明镜, 孙渝刚. 考虑简化胶结模型的深海能源土宏观力学性质离散元数值模拟分析[J]. 岩土力学, 2011, 21(增刊1): 755-760. (XIAO Yu, JIANG Ming-jing, SUN Yu-gang. Numerical simulation of macromechanical properties of deep-sea energy soil by discrete element method under simplified bond model[J]. Rock and Soil Mechanics, 2011, 21(S1): 755-760. (in Chinese))
    [2] DILLON W P, DANFORTH W W, HUTCHINSON D R, et al. Evidence for long-term instability in Storegga region off western Norway[J]. Marine Geology, 1996, 13: 281-292.
    [3] PETERS D, HATTON G. Gas hydrate geohazards in shallow sediments and their impact on the design of subsea systems[C]// Proceedings of 6th International Conference on Gas Hydrate. Vancouver. British Columbia, 2008.
    [4] KATAOKA S, YAMASHITA S, SUZUKI T. Soils properties of the shallow type methane hydrate-bearing sediments in the Lake Baikal[C]// The 17th International Conference on Soil Mechanics and Geotechnical Engineering. Egypt, 2009: 299-302.
    [5] MASUI A, HANEDA H, OGATA Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]// Proceedings of the 15th International Offshore and Polar Engineering Conference. Seoul, 2005: 364-369.
    [6] HYODO M, NAKATA Y, YOSHIMOTO N, et al. Mechanical behavior of methane hydrate-supported sand [C]// International Symposium on Geotechnical Engineering Ground Improvement and Geosynthetics for Human Security and Environmental Preservation. Thailand, 2007: 195-208.
    [7] ZHANG X H, LU X B, ZHANG L M, et al. Experimental study on mechanical properties of methane-hydrate-bearing sediments[J]. Acta Mechanica Sinica, 2012, 28(5): 1356-1366.
    [8] YU Y, CHENG Y P, SOGA K. Mechanical behaviour of methane hydrate soil sediments using discrete element method: pore-filling hydrate distribution[M]// WU C Y. Discrete Element Modelling of Particulate Media. London: RSC Publishing, 2012: 264-270.
    [9] YAN R, WEI C, WEI H, et al. A generalized critical state model for gas hydrate-bearing sediments[M]// YANG Q, ZHANG J M, ZHENG H, et al. Constitutive Modeling of Geomaterials. Springer: Berlin Heidelberg, 2013: 649-656.
    [10] BORJA R I, SONG X, RECHENMACHER A L, et al. Shear band in sand with spatially varying density[J]. Journal of the Mechanics and Physics of Solids, 2012, 61(1): 219-234.
    [11] JIANG M, ZHU H, LI X. Strain localization analyses of idealized sands in biaxial tests by distinct element method[J]. Frontiers of Architecture and Civil Engineering in China, 2010, 4(2): 208-222.
    [12] JIANG M, ZHANG W, SUN Y, et al. An investigation on loose cemented granular materials via DEM analyses[J]. Granular Matter, 2013, 15(1): 65-84.
    [13] HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.
    [14] JIANG M, CHEN H, TAPIAS M, et al. Study of mechanical behavior and strain localization of methane hydrate bearing sediments with different saturations by a new DEM model[J]. Computers and Geotechnics, 2014, 57: 122-138.
    [15] JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5): 340-357.
    [16] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and geotechnics, 2003, 30(7): 579-597.
    [17] JIANG M J, YAN H B, ZHU H H, et al. Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses[J]. Computers and Geotechnics, 2011, 38(1): 14-29.
  • 期刊类型引用(8)

    1. 徐善进,卢坤林,梅一帆,贾森林. 基于构造滑动面正应力分布边坡可靠性分析方法研究. 合肥工业大学学报(自然科学版). 2025(03): 418-425+432 . 百度学术
    2. 王喆恺,谭慧明,高志兵. 基于机器学习的厚覆盖土层建筑场地类别评价. 地震学报. 2024(03): 477-489 . 百度学术
    3. 候建琴. 基于强度折减法和随机响应面的边坡变形稳定可靠度分析. 价值工程. 2024(28): 109-112 . 百度学术
    4. 蒋志坚,黄旭东,黄小平,朱珍德. 基于抗滑桩-锚杆组合结构支护下边坡变形机制研究. 山西建筑. 2024(22): 69-73+144 . 百度学术
    5. 宋健,陆朱汐,谢华威,吴凯莉. 地震作用下分层土边坡多滑面变形破坏的数值模拟研究. 地震工程学报. 2023(02): 296-305 . 百度学术
    6. 舒苏荀,张东升,潘天久,钱家骏,陈训龙. 小样本条件下基于Bootstrap方法的边坡非概率可靠度分析. 土木工程与管理学报. 2023(03): 96-103 . 百度学术
    7. 陈昌富,李伟,张嘉睿,廖佳卉,吕晓玺. 山区公路边坡工程智能分析与设计研究进展. 湖南大学学报(自然科学版). 2022(07): 15-31 . 百度学术
    8. 孙志彬,郝状,谭晓慧,杨小礼,姬建. 基于滑动面离散的边坡三维上限分析机构. 岩石力学与工程学报. 2022(09): 1923-1934 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 14
出版历程
  • 收稿日期:  2014-02-11
  • 发布日期:  2014-09-21

目录

    /

    返回文章
    返回