• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

现今斜坡工程安全设计理论的根本缺陷与灾难后果

岳中琦, 徐前

岳中琦, 徐前. 现今斜坡工程安全设计理论的根本缺陷与灾难后果[J]. 岩土工程学报, 2014, 36(9): 1601-1606. DOI: 10.11779/CJGE201409005
引用本文: 岳中琦, 徐前. 现今斜坡工程安全设计理论的根本缺陷与灾难后果[J]. 岩土工程学报, 2014, 36(9): 1601-1606. DOI: 10.11779/CJGE201409005
YUE Zhong-qi, XU Qian. Fundamental drawbacks and disastrous consequences of current geotechnical safety design theories for slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1601-1606. DOI: 10.11779/CJGE201409005
Citation: YUE Zhong-qi, XU Qian. Fundamental drawbacks and disastrous consequences of current geotechnical safety design theories for slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1601-1606. DOI: 10.11779/CJGE201409005

现今斜坡工程安全设计理论的根本缺陷与灾难后果  English Version

基金项目: 致 谢:感谢第四届全国岩土与工程学术大会、中国建筑学会工程勘察分会2013年学术大会、第六届全国地质灾害与防治学术会议、南方岩土论坛和2012城市地质环境与可持续发展论坛主办单位的邀请,分别在2013年11月4日、2013年4月22日、2013年4月11日、2012年12月8日、2012年12月5日作了与本文内容相关的大会报告; 感谢国家重点基础研究发展计划(973计划)项目编号2011CB710606和国家自然科学基金面上项目编号41372336的部分资助; 感谢王思敬院士、钱七虎院士、王仲琦勘察大师、郑宏教授、李天斌教授、丘建金总工、兰恒星教授等朋友对本文的批评与指正
详细信息
    作者简介:

    岳中琦(1962- ),男,副教授,从事地球科学、岩土力学与工程等方面的教学和科研。E-mail: yueqzq@hku.hk。

  • 中图分类号: TU43

Fundamental drawbacks and disastrous consequences of current geotechnical safety design theories for slopes

  • 摘要: 滑坡及其灾难在世界各地、经现代岩土工程设计施工的斜坡中不断地发生。论文提出、分析和论证了造成工程斜坡滑坡的一个本质原因。它就是现代斜坡工程安全设计理论存在根本缺陷。这个缺陷表现在3个方面。第一,土体抗剪强度参数(有效黏聚力和有效内摩擦角)在斜坡安全设计中假定为常数,不随土体孔隙和含水率的增大而减低到零,孔隙水对土体剪切强度的影响仅体现在孔隙水压强对有效应力的影响。第二,经典岩土力学理论(特别是有效应力原理和排水固结理论)仅能预测外部加载产生土体压剪、孔隙率减小、土体强度增大的岩土稳定工况过程。它们不适用于外部卸载造成土体拉张、孔隙率增大、土体强度减少的岩土破垮工况过程。第三,斜坡安全系数是土体抗剪强度与施加剪切应力的比值。由于土体强度本值(品质)很低,加固工程增加这个比值安全系数达到设计最小值时所能够提供的强度本质(品质)增加量也就不高。斜坡工程岩土体的强度和品质没有得到能够防治岩土体拉张变形和滑垮的根本改善和增强。从而,工程人员必须精心全力地确保低品质斜坡工程岩土不破垮和滑塌。可是,又由于工程斜坡众多和它们的降雨、场地和环境变化较大,上述3个方面现代斜坡工程安全设计理论的根本缺陷可以导致:达到安全设计标准的工程斜坡,在施工和营运过程中,能够发生滑垮、产生灾难后果。本论文特别认为,经典岩土力学理论是仅适用于完全压剪的,应称为压剪岩土力学理论。提出了应该建立既适用压剪又适用拉剪的、新的土力学理论和防抗岩土灾害设计方法。
    Abstract: The fundamental drawbacks and their disastrous consequences of the current geotechnical safety design theories for slopes are pointed out, analyzed and evaluated. The drawbacks are as follows: (1) The shear strength parameters of soils (effective cohesion and angle of internal friction) are assumed to have constant values in the design theories. However, they are changeable and can be reduced to zero due to the progressive tensile deformation and increase in void ratios and pore-water contents in the slope soils. (2) The classical theories of soils (such as the effective stress principle and soil consolidation theory) are valid only under the condition of compressive-shearing loading with reduction of soil voids and pore-water contents. They are not suitable to the condition of tensile-shearing loading with increase of soil voids and pore-water contents. This condition is actually what happened during the process of slope failure and landslide. (3) The factor of safety is a ratio of the soil shear strength to the downward sliding shear stress. As the shear strength of soils is small, its increase according to the ratio is very small, which cannot make substantial improvements to the soil quality and resistance to failure. Accordingly, failures and landslides in engineered slopes can commonly occur around the world although geotechnical engineers put tremendous efforts in preventing and controlling their occurrences. The classical soil mechanics is only applicable to the soils subjected to complete compression and shear loading condition, and is a completely compression-shear soil mechanics theory. A new soil mechanics and new geotechnical design methods applicable to soils subjected to either the compression-shear or tension-shear loading conditions shall be developed.
  • [1] YUE Z Q. Social benefits of landslide prevention and mitigation in Hong Kong, China[M]// Progress of Geo-Disaster Mitigation Technology in Asia, Environmental Science and Engineering. Berlin Heidelberg: Springer-Verlag, 2013: 55-75.
    [2] CHOI K Y, CHEUNG R W M. Landslide disaster prevention and mitigation through works in Hong Kong[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(5): 354-365.
    [3] MORGENSTERN N R. Common ground (keynote address) [C]// Proceedings of International Conference on Geo Eng. Melbourne, 2000: 1-30.
    [4] TERZAGHI K. Erdbau mechanik auf bodenphysikalisher grundlage (Earthwork Mechanics based on the physics of soils)[M]. Leipzig and/or Wien (Vienna): Franz Deuticke, 1925. (in German)
    [5] TERZAGHI K, PECK R B. Soil mechanics in engineering practice[M]. New York: Wiley, 1948.
    [6] GOODMAN R E. Karl Terzaghi: the engineer as artist[M]. Reston, Va: American Society of Civil Engineers (ASCE) Publications, 1999.
    [7] MORGENSTERN N R, PRICE V E. The analysis of the stability of generalized slip surfaces[J]. Géotechnique, 1965, 15(1): 79-93.
    [8] 陈祖煜. 土质边坡稳定分析[M]. 北京: 中国水利电力出版社, 2003. (CHEN Zu-yu. Soil slope stability analysis: theory, methods and programs[M]. Beijing: China Water & Power Press, 2003. (in Chinese))
    [9] 王钟琦. 岩土工程价值观[C]// 全国岩土与工程学术大会论文集(上册). 北京: 人民交通出版社, 2003. (WANG Zhong-qi. Viewpoint on values of geotechnical engineering[C]// Proceedings of China Congress of Geo-engineering. Beijing: China Communications Press, 2003. (in Chinese))
    [10] PECK R B. Art and science in subsurface engineering[J]. Géotechnique, 1962, 12(1): 60-66.
    [11] PECK R B. Advantages and limitations of the observational method in applied soil mechanics[J]. Géotechnique, 1969, 19(2): 171-187.
    [12] Geotechnical Engineering Office. Geotechnical manual for slope engineering[M]. Government of HKSAR: Civil Engineering Department, 1998.
  • 期刊类型引用(1)

    1. 潘鹏志,王兆丰,封雨捷,李雨芯. 深空探测任务中岩土力学若干问题及研究进展. 岩土力学. 2024(11): 3153-3172 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  683
  • HTML全文浏览量:  23
  • PDF下载量:  917
  • 被引次数: 1
出版历程
  • 收稿日期:  2013-12-15
  • 发布日期:  2014-09-21

目录

    /

    返回文章
    返回