Experimental study on new filling cementing material using water-hardening nickel slag tailings of Jinchuan Mine
-
摘要: 金川镍矿到2012年堆存镍铜炉渣3.3×107 t,每年还产出镍铜渣2.5×106 t。水淬镍渣提铁后每年排出1.25×106 t镍渣尾砂废弃物。利用冶金废弃物开发矿山充填胶凝剂,不仅可以实现废物资源化利用,而且还能够降低充填采矿成本,提高采矿经济社会效益。针对金川水淬镍渣尾砂所潜在的活性,采用机械活化和化学活化两种方式,进行了镍渣尾砂新型充填胶凝剂试验研究。研究结果表明,镍渣尾砂、脱硫石膏、电石渣、水泥熟料的最佳比表面积分别为620,200,200,300 m2/kg。化学活化采用脱硫石膏和电石渣为主激发剂,以硫酸钠和水泥熟料为辅激发剂,由此确定了镍渣尾砂掺量为85%,脱硫石膏、电石渣、硫酸钠和水泥熟料的复合激发最佳掺量分别为5%,5%,3%和2%。外加0.156%的PC高效减水剂,配制成胶砂比1∶4,料浆浓度为79%的充填料浆,7 d和28 d充填体强度分别达到2.9,6.3 MPa,满足金川矿山安全采矿对充填体强度要求。由此可见,开发的新型充填胶凝材料可以替代水泥应用于金川矿山胶结充填采矿。Abstract: By the end of 2012, the stockpiled quantity of nickel copper slag of Jinchuan Mine in China was 3.3×107 t, and 2.5×106 t is yielded every year. The quantity of discharging waste nickel slag every year is 1.25×106 t when the iron is extracted from the water-hardening nickel slag. Using metallurgical waste to develope a new type of filling cementing agent for mines can realize recycling use of waste and may reduce the cost of filling mining. Based on the characters of the water-hardening nickel slag of Jinchuan Mine, both the mechanical activation and chemical activation are implemented to obtain a new type of filling cementing agent. Based on the mechanical activation, the best specific surface areas of nickel slag tailings, desulfurization gypsum, calcium carbide slag and cement clinker are respectively 620, 200, 200 and 300 m2/kg. The chemical activation may use desulfurization gypsum and calcium carbide slag as the main activators, and sodium sulfate and cement clinker as the auxiliary ones. When the mixing amount of nickel slag tailings is 85%, the optimal mixing amounts of the compound activating dosage are respectively 5%, 5%, 3% and 2%. If the PC high efficiency water reducing agent of 0.156% is added, the strengths of filling body for 7 and 28 d will be respectively 2.9 and 6.3 MPa when the cement-sand ratio is 1∶4 and the concentration of the slurry is 79%, which can meet the strength of filling body for safe mining in Jinchuan Mine. It is seen that the proposed new type of filling cementing agent can replace cement for filling mining in Jinchuan Mine.
-
[1] 朱桂林, 孙树杉, 王建华. 高炉矿渣粉作高性能混凝土掺合料的研究和应用[J]. 粉煤灰, 2001, 13(2): 17-18. (ZHU Gui-lin, SUN Shu-shan, WANG Jian-hua. Research and application of blast furnace slag for high performance concrete admixture[J]. Coal Ash China, 2001, 13(2): 17-18. (in Chinese)) [2] 刘家详, 杨 儒, 胡明辉. 高炉水淬渣的利用研究[J]. 矿产综合利用, 2003(3): 40-44. (LIU Jia-xiang, YANG Ru, HU Ming-hui. Utilization of blast furnace slag water quenching[J]. Utilization of Mineral Resources, 2003(3): 40-44. (in Chinese)) [3] 杨长辉, 刘先锋, 刘 建. 碱矿渣水泥及混凝土化学外加剂的研究进展[J]. 混凝土, 2006(4): 17-18; 28. (YANG Chang-hui, LIU Xian-feng, LIU Jian. Alkali slag cement and concrete research progress of chemical admixtures[J]. Concrete, 2006(4): 17-18; 28. (in Chinese)) [4] 陈益民, 张洪滔, 郭随华, 等. 磨细钢渣粉作水泥高活性混合材料的研究[J]. 水泥, 2001(5): 1-4. (CHEN Y M, ZHANG H T, GUO S H, et al. Research of finely ground steel slag as cement mixing materials with high activity[J]. Cement, 2001(5): 1-4. (in Chinese)) [5] 何 娟, 程从密, 李烈军. 细度对电炉钢渣活性指数的影响[J]. 混凝土, 2011(7): 77-78. (HE Juan, CHENG Cong-mi, LI Lie-jun. The influence of fineness of electric furnace steel slag activity index[J]. Concrete, 2011(7): 77-78. (in Chinese)) [6] 孔祥文, 王 丹, 隋智通. 矿渣胶凝材料的活化机理及高效激发剂[J]. 中国资源综合利用, 2004(6): 21-26. (HONG Xiang-wen, WANG Dan, SUI Zhi-tong. The activation mechanism of slag cement materials and efficient excitation agent[J]. Comprehensive utilization of resources in China. 2004(6): 21-26. (in Chinese)) [7] 丁 铸, 张 鸣, 邢 锋. 矿渣水硬活性的复合激发试验研究[J]. 广东建材, 2008(9): 12-14. (DING Zhu, ZHANG Ming, XING Feng. Experimental study on hydraulic activity of slag composite excitation[J]. Guangdong Building Materials, 2008(9): 12-14. (in Chinese)) [8] 丁 铸, 王淑平, 张 鸣. 钢渣水硬活性的激发研究[J]. 山东建材, 2008(4): 47-50. (DING Zhu, WANG Shu-ping, ZHANG Ming. The activity of steel slag hydraulic inspired research[J]. Journal of Shandong Building Materials, 2008(4): 47-50. (in Chinese)) [9] 李永鑫, 陈益民. 磨细矿物掺合料对水泥硬化浆体孔结构及砂浆强度的影响[J]. 硅酸盐学报, 2006, 34(5): 575-579. (LI Yong-xin, CHEN Yi-min. Impact on the pore structure of hardened cement paste and mortar strength of finely ground mineral admixtures[J]. Ceramic Society, 2006, 34(5): 575-579. (in Chinese)) [10] 董 璐, 高 谦, 南世卿. 超细全尾砂新型胶结充填料水化机理与性能[J]. 中南大学学报, 2013, 44(4): 1571-1577. (DONG Lu, GAO Qian, NAN Shi-qing. Ultrafine backfilling materials all new hydration mechanism and performance of cemented filling[J]. Journal of Central South University, 2013, 44(4) : 1571-1577. (in Chinese)) [11] 魏 微, 高 谦. 复配外加剂对全尾砂新型胶凝材料强度的影响[J]. 化工矿物与加工, 2013(7): 18-22. (WEI Wei, GAO Qian. The impact of the whole complex admixture of new tailings cementitious material strength[J]. Industrial Minerals and Processing, 2013(7): 18-22. (in Chinese)) [12] 魏 微, 高 谦, 杨志强. 全尾砂新型胶凝材料的现场力学试验[J]. 金属矿山, 2013(8): 150-152. (WEI Wei, GAO Qian, YANG Zhi-qiang. The backfilling the scene of new cementing material mechanics test[J]. Metal mine, 2013(8): 150-152. (in Chinese)) -
期刊类型引用(21)
1. 刘涛,张明,王立朝,杨龙,殷保国. 甘肃舟曲江顶崖古滑坡形成演化机理与堆积体稳定性评价. 地质科技通报. 2024(03): 266-278 . 百度学术
2. 马宏煜. 引汉济渭工程黄池沟0号复活滑坡体治理技术研究. 水利建设与管理. 2024(07): 38-46 . 百度学术
3. 党杰,杨亮,段方情,范宣梅. 贵州晴隆红寨大型古滑坡复活变形特征及成因分析. 中国地质灾害与防治学报. 2024(04): 25-35 . 百度学术
4. 马海善,吴瑞安,赵文博,王计博,齐畅,邓盼,李英钧. 西藏山南鲁麦古滑坡发育特征与复活变形机制研究. 中国地质灾害与防治学报. 2024(05): 32-41 . 百度学术
5. 王立朝,任三绍,李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究. 中国地质灾害与防治学报. 2024(05): 21-31 . 百度学术
6. 夏玉云,柳旻,乔建伟,刘争宏,王冉,周人飞,栗薪洋. 东南亚某水电站古滑坡复活机制研究. 岩土工程技术. 2023(03): 262-267 . 百度学术
7. 周洪福,方甜,夏晨皓,冉涛,徐如阁,张景华. 工程扰动诱发川西杜米滑坡复活变形特征及机理分析. 现代地质. 2023(04): 1044-1053 . 百度学术
8. 黄达,李子晔. 某工程厂址古滑坡变形演化机制及稳定性研究. 河北工业大学学报. 2023(06): 75-81 . 百度学术
9. 宋德光,吴瑞安,马德芹,郭长宝,王炀,倪嘉伟,李祥. 四川泸定昔格达组滑坡灾害运动过程模拟分析. 地质通报. 2023(12): 2185-2197 . 百度学术
10. 孙昊,李天涛,裴向军,王守道,伍先福,江荣昊,黄艺. 青海隆务西山古滑坡群复活机理及威胁范围预测. 工程地质学报. 2022(03): 829-842 . 百度学术
11. 张卫雄,丁保艳,张文纶,张国华. 舟曲江顶崖大型滑坡成因及破坏机制分析. 防灾减灾工程学报. 2022(04): 714-722 . 百度学术
12. 张永双,吴瑞安,任三绍. 降雨优势入渗通道对古滑坡复活的影响. 岩石力学与工程学报. 2021(04): 777-789 . 百度学术
13. 刘秋强,杜岩,郭富赟,霍磊晨. 青藏高原东端甘肃舟曲牙豁口滑坡复活机理研究. 灾害学. 2021(02): 113-117 . 百度学术
14. 任三绍,张永双,徐能雄,吴瑞安. 含砾滑带土残余强度与剪切面粗糙度的细观响应机制. 岩土工程学报. 2021(08): 1473-1482 . 本站查看
15. 钟育瑾,范宣梅,戴岚欣,邹城彬,张帆宇,许强. 岷江叠溪巨型古滑坡研究. 地球物理学进展. 2021(04): 1784-1796 . 百度学术
16. 王蛟,胡卸文,何坤,曹希超. 基于Flac-3D的盐源县玻璃村滑坡变形破坏机理数值模拟. 地质灾害与环境保护. 2021(03): 11-17 . 百度学术
17. 华智. 川西北某国道公路滑坡病害分析及处置. 甘肃水利水电技术. 2021(10): 30-34 . 百度学术
18. 黄晓虎,易武,龚超,黄海峰,余庆. 开挖致使古滑坡复活变形机理研究. 岩土工程学报. 2020(07): 1276-1285 . 本站查看
19. 何坤,胡卸文,马国涛,刘波,梅雪峰,王蛟,杨群. 四川省盐源玻璃村特大型玄武岩古滑坡复活机制. 岩土力学. 2020(10): 3443-3455 . 百度学术
20. 陈家兴,赵兰英,司长亮. 碎石土古滑坡演化复活机理分析. 人民长江. 2019(10): 136-142 . 百度学术
21. 王威,许宝田. 南京牛首山滑坡机制分析. 土工基础. 2019(06): 660-664 . 百度学术
其他类型引用(11)