• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

一个深海能源土的温度-水压-力学二维微观胶结模型

蒋明镜, 朱方园

蒋明镜, 朱方园. 一个深海能源土的温度-水压-力学二维微观胶结模型[J]. 岩土工程学报, 2014, 36(8): 1377-1386. DOI: 10.11779/CJGE201408001
引用本文: 蒋明镜, 朱方园. 一个深海能源土的温度-水压-力学二维微观胶结模型[J]. 岩土工程学报, 2014, 36(8): 1377-1386. DOI: 10.11779/CJGE201408001
JIANG Ming-jing, ZHU Fang-yuan. A two-dimensional thermal-hydro-mechanical bond contact model for methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1377-1386. DOI: 10.11779/CJGE201408001
Citation: JIANG Ming-jing, ZHU Fang-yuan. A two-dimensional thermal-hydro-mechanical bond contact model for methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1377-1386. DOI: 10.11779/CJGE201408001

一个深海能源土的温度-水压-力学二维微观胶结模型  English Version

基金项目: 国家杰出青年基金项目(51025932); 教育部博士点基金项目(20100072110048); 国家自然科学重点基金项目(51239010)
详细信息
    作者简介:

    蒋明镜(1965- ),男,教授,博士生导师,主要从事天然结构性黏土、砂土、非饱和土、太空土和深海能源土宏观微观试验、本构模型和数值分析研究。E-mail: mingjing.jiang@tongji.edu.cn。

  • 中图分类号: TU411

A two-dimensional thermal-hydro-mechanical bond contact model for methane hydrate bearing soils

  • 摘要: 天然气水合物以胶结形式赋存时,对深海能源土的强度和变形特性影响显著,且其影响程度与所处温度、水压与力学环境密切相关。旨在建立可考虑温(温度)-压(水压)-力(力-位移与胶结破坏准则)耦合影响的深海能源土微观胶结模型。首先,依据能源土中水合物胶结可发生于两种接触形式(直接接触与有间距)的土颗粒间,提出适用于两种胶结模式的力-位移准则和胶结破坏准则。其次,提出温压距离参数L(表示在无量纲化处理后的温度-水压坐标平面,土体所处温度与水压点到水合物相平衡线的最小距离),并依据文献资料分析,建立水合物胶结强度、刚度与参数L间的关系。最后,建立由水合物饱和度确定的粒间水合物胶结尺寸计算方法,并据此进一步建立了胶结强度与刚度同水合物饱和度间的关系。该模型可以方便地植入离散元程序,从而用于深海能源土的宏微观力学分析。
    Abstract: The strength and deformation of methane hydrate bearing soils are influenced by their inter-particle cemented hydrate, the extent of which depends on the surrounding temperature, pore-water pressure and mechanical environment. It is aimed to establish a thermal-hydro-mechanical bond contact model for methane hydrate bearing soils. Firstly, contact force-displacement laws and bond failure criteria are presented according to two types of bond modes that methane hydrate may present. Secondly, the strength and stiffness of inter-particle cemented hydrate are studied with respect to the parameter L which identifies the minimum distance from a point to the phase equilibrium line in the coordinate system with ordinate being dimensionless pore-water pressure and abscissa being dimensionless temperature. Finally, the size of cemented hydrate is calculated corresponding to the methane hydrate saturation. The proposed bond contact model can be easily implemented into the distinct element method (DEM), providing an efficient tool for investigating the macro- and micro-mechanical behaviors of methane hydrate bearing soils.
  • [1] MACDOBALD G T. The future of methane as an energy resource[J]. Annual Review of Energy, 1990, 15: 53-83.
    [2] MAX M D, LOWRIE A. Oceanic methane hydrate: a “frontier” gas resource[J]. Journal of Petroleum Geology, 1996, 19(1): 41-56.
    [3] WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(RG4003).
    [4] BRUGADA J, CHENG Y P, SOGA K, et al. Discrete element modeling of geomechanical behavior of methane hydrate soils with pore-filling hydrate distribution[J]. Granular Matter, 2010, 12: 517-525.
    [5] MAX M D. Natural gas hydrate: in oceanic and permafrost environments[M]. London: Kluwer Academic Publishers, 2000: 61-76.
    [6] NIXON M F, GROZIC J L H. Submarine slope failure due to gas hydrate dissociation: a preliminary quatification[J]. Canadian Geotechnical Journal, 2007, 44: 314-325.
    [7] SULTAN N, COCHONAT P, FOUCHER J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 2004, 213: 379-401.
    [8] HYODO M, NAKATA Y, YOSHIMOTO N, et al. Mechanical behavior of methane hydrate-supported sand[C]// International Symposium on Geotechnical Engineering Ground Improvement and Geosynthetics for Human Security and Environmental Preservation. Bangkok, 2007.
    [9] HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate- bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.
    [10] MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compression properties of artificial methane-hydrate-bearing sediment[J]. Journal of Geophysical Research, 2011, 16, B06102.
    [11] SANTAMARINA J C, RUPPEL C. The impact of hydrate saturation on the mechanical, electrical, and thermal proper-ties of hydrate-bearing sand, silts, and clay[C]// The 6th International Conference on Gas Hydrate. Vancouver, 2008.
    [12] 魏厚振, 颜荣涛, 陈 盼, 等. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. 岩土力学, 2011, 32(增刊2): 198-203. (WEI Hou-zhen, YAN Rong-tao, CHEN Pan, et al. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different contents under traxial shear tests[J]. Rock and Soil Mechanics, 2011, 32(S2): 198-203. (in Chinese))
    [13] 吴二林, 魏厚振, 颜荣涛, 等. 考虑损伤的含天然气水合物沉积物本构模型[J]. 岩石力学与工程学报, 2012, 31(增刊1): 3045-3050. (WU Er-lin, WEI Hou-zhen, YAN Rong-tao, et al. Constitutive model for gas hydrate-bearing sediments considering damage[J]. 2012, 31(S1): 3045-3050. (in Chinese))
    [14] 李洋辉, 宋永臣, 于 锋, 等. 围压对水合物沉积物力学特性的影响[J]. 石油勘探与开发, 2011, 38(5): 637-640. (LI Yang-hui, SONG Yong-chen, YU Feng, et al. Effect of confining pressure on mechanical behavior of methane hydrate-bearing sediments[J]. Petroleum Exploration and Development, 2011, 38(5): 637-640. (in Chinese))
    [15] 刘 芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565-1572. (LIU Fang, KOU Xiao-yong, JIANG Ming-jing, et al. The traxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1565-1572. (in Chinese))
    [16] CUNDALL P A, STRACK O L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29: 47-65.
    [17] JUNG J W, SANTAMARINA J C, SOGA K. Stress-strain response of hydrate-bearing sands: numerical study using discrete element method simulations[J]. Journal of Geophysical Research, 2012, 117(B04202).
    [18] KREITER S, FEESER V, KREITER M, et al. A distinct element simulation including surface tension-towards the modeling of gas hydrate behavior[J]. Computational Geosciences, 2007, 11: 117-129.
    [19] HOLTZMAN R. Mechanical properties of granular materials: a variational approach to grain-scale simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33: 391-404.
    [20] 蒋明镜, 刘 芳, 肖 俞. 深海能源土开采对海床稳定性的影响研究思路[J]. 岩土工程学报, 2010, 32(9): 1412-1417. (JIANG Ming-jing, LIU Fang, XIAO Yu. Methodology for assessing seabed instability induced by exploitation of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1412-1417. (in Chinese))
    [21] JIANG M J, SUN Y G, XIAO Y. An experimental investigation on the mechanical behavior between cemented granule[J]. Geotechnical Testing Journal (ASTM), 2012, 35(5): 678-690.
    [22] JIANG M J, SUN Y G, LI L Q, et al. Contact behavior of idealized granules bonded in two different interparticle distances: An experimental investigation[J]. Mechanics of Materials, 2012, 55: 1-15.
    [23] 蒋明镜, 肖 俞, 朱方园. 深海能源土微观力学胶结模型及参数研究[J]. 岩土工程学报, 2012, 34(9): 1574-1583. (JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. The obtain of micro-contact model and bond parameters for the deep-sea energy soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1574-1583. (in Chinese))
    [24] 蒋明镜, 肖 俞, 朱方园. 深海能源土宏观力学性质的离散元数值模拟分析[J]. 岩土工程学报, 2013, 35(1): 157-163. (JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163.(in Chinese))
    [25] 蒋明镜, 朱方园, 申志福. 试验反压对深海能源土宏观力学特性影响的离散元分析[J]. 岩土工程学报, 2013, 35(2): 219-226. (JIANG Ming-jing, ZHU Fang-yuan, Shen Zhi-fu. The influence of backpressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226. (in Chinese))
    [26] 蒋明镜, 贺 洁, 周雅萍. 基于微观胶结厚度模型的深海能源土宏观力学特性离散元模拟[J]. 岩土力学, 2013, 34(9): 2672-2682. (JIANG Ming-jing, HE Jie, ZHOU Ya-ping. Distinct element analysis of macro-mechanical properties of deep-sea methane hydrate-bearing soil using micro-bond thickness model[J]. Rock and Soil Mechanics, 2013, 34(9): 2672-2682. (in Chinese))
    [27] JIANG M J, YU H S, HARRIS D. Bonding rolling resistance and its effect on yielding of bonded granulates by DEM analyses[J]. International Journal for Numerical and Analytical Methods Geomechanics, 2006, 30: 723-761.
    [28] JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32: 340-357.
    [29] HYODO M, HYDE A F L, NAKATA Y, et al. Triaxial compressive strength of methane hydrate[C]// Proceedings of the 12th International Offshore and Polar Engineering Conference. Kitakyushu, 2002: 422-428.
    [30] SONG Y C, YU F, LI Y H, et al. Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of Natural Gas Chemistry, 2010, 19: 246-250.
    [31] YU F, SONG Y C, LIU W G, et al. Study on shear strength of artificial methane hydrate[C]// Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering OMAE 2010. Shanghai, 2010: 1-6.
    [32] NABESHIMA Y, MATSUI T. Static shear behaviors of methane hydrate and ice[C]// Proceedings of the fifth ocean mining symposium. Tsukuba, 2003: 156-159.
    [33] NABESHIMA Y, TAKAI Y. Compressive strength and density of methane hydrate[C]// Proceedings of the 6th ISOPE Ocean Mining Symposium. Changshai, 2005: 199-202.
    [34] HYODO M, NAKATA Y, NORIMASA Y, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 2005, 45(1): 75-85.
    [35] ECKER C, DVORKIN J, NUR A. Sediments with gas hydrates: Internal structure from seismic AVO[J]. Geophysics, 1998, 63: 1659-1669.
    [36] BEHSERESHT J, PENG Y, PRODANOVIC M, et al. Mechanisms by which methane gas and methane hydrate coexist in ocean sediments[C]// The Offshore Technology Conference. Houston, 2008.
  • 期刊类型引用(10)

    1. 张盛行,汤雷,朱春光,石蓝星,明攀. 瞬变电磁探测土质堤坝渗漏病害的正演模拟与工程应用. 水利水电技术(中英文). 2025(S1): 392-397 . 百度学术
    2. 施晓萍,周柏兵,郭庆鑫,李家群. 机载激光雷达在堤防隐患巡查试验中的应用. 水利发展研究. 2024(01): 86-93 . 百度学术
    3. 黄曙光. 英德庄洲防洪堤水毁应急抢险修复策略. 云南水力发电. 2024(03): 99-102 . 百度学术
    4. 涂建伟,蒋德成,崔家仲,何孟芸,贾刚. 面向岸堤坍塌全过程的应急防护措施与装置. 人民长江. 2024(04): 200-206 . 百度学术
    5. 薛凯喜,李明吉,曹凯,胡艳香. 鄱阳湖圩堤管涌险情分析与防治措施. 河北工程大学学报(自然科学版). 2024(02): 95-104 . 百度学术
    6. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 . 百度学术
    7. 陈昱行,高至飞,胡朝鹏,宋国策. 基于无人机多模态数据的铁路防洪隐患排查系统研发. 铁道勘察. 2024(05): 156-162 . 百度学术
    8. 蒋水华,陈颖霞,熊威,李彧玮,常志璐,李锦辉,李文欢. 堤防工程险情风险评估与管控研究进展. 人民珠江. 2024(11): 1-13 . 百度学术
    9. 刘阳,涂善波,李亚楠. 双线盾构隧道穿越影响下的黄河堤防沉降监测研究. 陕西水利. 2023(10): 135-138 . 百度学术
    10. 涂善波,刘阳. 基于多源监测技术的穿黄隧道堤防安全影响评价. 水科学与工程技术. 2023(05): 73-76 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  438
  • HTML全文浏览量:  3
  • PDF下载量:  524
  • 被引次数: 13
出版历程
  • 收稿日期:  2013-07-23
  • 发布日期:  2014-08-18

目录

    /

    返回文章
    返回