[1] |
MACDOBALD G T. The future of methane as an energy resource[J]. Annual Review of Energy, 1990, 15: 53-83.
|
[2] |
MAX M D, LOWRIE A. Oceanic methane hydrate: a “frontier” gas resource[J]. Journal of Petroleum Geology, 1996, 19(1): 41-56.
|
[3] |
WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(RG4003).
|
[4] |
BRUGADA J, CHENG Y P, SOGA K, et al. Discrete element modeling of geomechanical behavior of methane hydrate soils with pore-filling hydrate distribution[J]. Granular Matter, 2010, 12: 517-525.
|
[5] |
MAX M D. Natural gas hydrate: in oceanic and permafrost environments[M]. London: Kluwer Academic Publishers, 2000: 61-76.
|
[6] |
NIXON M F, GROZIC J L H. Submarine slope failure due to gas hydrate dissociation: a preliminary quatification[J]. Canadian Geotechnical Journal, 2007, 44: 314-325.
|
[7] |
SULTAN N, COCHONAT P, FOUCHER J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 2004, 213: 379-401.
|
[8] |
HYODO M, NAKATA Y, YOSHIMOTO N, et al. Mechanical behavior of methane hydrate-supported sand[C]// International Symposium on Geotechnical Engineering Ground Improvement and Geosynthetics for Human Security and Environmental Preservation. Bangkok, 2007.
|
[9] |
HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate- bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.
|
[10] |
MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compression properties of artificial methane-hydrate-bearing sediment[J]. Journal of Geophysical Research, 2011, 16, B06102.
|
[11] |
SANTAMARINA J C, RUPPEL C. The impact of hydrate saturation on the mechanical, electrical, and thermal proper-ties of hydrate-bearing sand, silts, and clay[C]// The 6th International Conference on Gas Hydrate. Vancouver, 2008.
|
[12] |
魏厚振, 颜荣涛, 陈 盼, 等. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. 岩土力学, 2011, 32(增刊2): 198-203. (WEI Hou-zhen, YAN Rong-tao, CHEN Pan, et al. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different contents under traxial shear tests[J]. Rock and Soil Mechanics, 2011, 32(S2): 198-203. (in Chinese))
|
[13] |
吴二林, 魏厚振, 颜荣涛, 等. 考虑损伤的含天然气水合物沉积物本构模型[J]. 岩石力学与工程学报, 2012, 31(增刊1): 3045-3050. (WU Er-lin, WEI Hou-zhen, YAN Rong-tao, et al. Constitutive model for gas hydrate-bearing sediments considering damage[J]. 2012, 31(S1): 3045-3050. (in Chinese))
|
[14] |
李洋辉, 宋永臣, 于 锋, 等. 围压对水合物沉积物力学特性的影响[J]. 石油勘探与开发, 2011, 38(5): 637-640. (LI Yang-hui, SONG Yong-chen, YU Feng, et al. Effect of confining pressure on mechanical behavior of methane hydrate-bearing sediments[J]. Petroleum Exploration and Development, 2011, 38(5): 637-640. (in Chinese))
|
[15] |
刘 芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565-1572. (LIU Fang, KOU Xiao-yong, JIANG Ming-jing, et al. The traxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1565-1572. (in Chinese))
|
[16] |
CUNDALL P A, STRACK O L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29: 47-65.
|
[17] |
JUNG J W, SANTAMARINA J C, SOGA K. Stress-strain response of hydrate-bearing sands: numerical study using discrete element method simulations[J]. Journal of Geophysical Research, 2012, 117(B04202).
|
[18] |
KREITER S, FEESER V, KREITER M, et al. A distinct element simulation including surface tension-towards the modeling of gas hydrate behavior[J]. Computational Geosciences, 2007, 11: 117-129.
|
[19] |
HOLTZMAN R. Mechanical properties of granular materials: a variational approach to grain-scale simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33: 391-404.
|
[20] |
蒋明镜, 刘 芳, 肖 俞. 深海能源土开采对海床稳定性的影响研究思路[J]. 岩土工程学报, 2010, 32(9): 1412-1417. (JIANG Ming-jing, LIU Fang, XIAO Yu. Methodology for assessing seabed instability induced by exploitation of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1412-1417. (in Chinese))
|
[21] |
JIANG M J, SUN Y G, XIAO Y. An experimental investigation on the mechanical behavior between cemented granule[J]. Geotechnical Testing Journal (ASTM), 2012, 35(5): 678-690.
|
[22] |
JIANG M J, SUN Y G, LI L Q, et al. Contact behavior of idealized granules bonded in two different interparticle distances: An experimental investigation[J]. Mechanics of Materials, 2012, 55: 1-15.
|
[23] |
蒋明镜, 肖 俞, 朱方园. 深海能源土微观力学胶结模型及参数研究[J]. 岩土工程学报, 2012, 34(9): 1574-1583. (JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. The obtain of micro-contact model and bond parameters for the deep-sea energy soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1574-1583. (in Chinese))
|
[24] |
蒋明镜, 肖 俞, 朱方园. 深海能源土宏观力学性质的离散元数值模拟分析[J]. 岩土工程学报, 2013, 35(1): 157-163. (JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163.(in Chinese))
|
[25] |
蒋明镜, 朱方园, 申志福. 试验反压对深海能源土宏观力学特性影响的离散元分析[J]. 岩土工程学报, 2013, 35(2): 219-226. (JIANG Ming-jing, ZHU Fang-yuan, Shen Zhi-fu. The influence of backpressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226. (in Chinese))
|
[26] |
蒋明镜, 贺 洁, 周雅萍. 基于微观胶结厚度模型的深海能源土宏观力学特性离散元模拟[J]. 岩土力学, 2013, 34(9): 2672-2682. (JIANG Ming-jing, HE Jie, ZHOU Ya-ping. Distinct element analysis of macro-mechanical properties of deep-sea methane hydrate-bearing soil using micro-bond thickness model[J]. Rock and Soil Mechanics, 2013, 34(9): 2672-2682. (in Chinese))
|
[27] |
JIANG M J, YU H S, HARRIS D. Bonding rolling resistance and its effect on yielding of bonded granulates by DEM analyses[J]. International Journal for Numerical and Analytical Methods Geomechanics, 2006, 30: 723-761.
|
[28] |
JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32: 340-357.
|
[29] |
HYODO M, HYDE A F L, NAKATA Y, et al. Triaxial compressive strength of methane hydrate[C]// Proceedings of the 12th International Offshore and Polar Engineering Conference. Kitakyushu, 2002: 422-428.
|
[30] |
SONG Y C, YU F, LI Y H, et al. Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of Natural Gas Chemistry, 2010, 19: 246-250.
|
[31] |
YU F, SONG Y C, LIU W G, et al. Study on shear strength of artificial methane hydrate[C]// Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering OMAE 2010. Shanghai, 2010: 1-6.
|
[32] |
NABESHIMA Y, MATSUI T. Static shear behaviors of methane hydrate and ice[C]// Proceedings of the fifth ocean mining symposium. Tsukuba, 2003: 156-159.
|
[33] |
NABESHIMA Y, TAKAI Y. Compressive strength and density of methane hydrate[C]// Proceedings of the 6th ISOPE Ocean Mining Symposium. Changshai, 2005: 199-202.
|
[34] |
HYODO M, NAKATA Y, NORIMASA Y, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 2005, 45(1): 75-85.
|
[35] |
ECKER C, DVORKIN J, NUR A. Sediments with gas hydrates: Internal structure from seismic AVO[J]. Geophysics, 1998, 63: 1659-1669.
|
[36] |
BEHSERESHT J, PENG Y, PRODANOVIC M, et al. Mechanisms by which methane gas and methane hydrate coexist in ocean sediments[C]// The Offshore Technology Conference. Houston, 2008.
|