• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

无黏性土斜坡地基承载力模型试验研究

马庆宏, 朱大勇, 雷先顺, 吴迎雷

马庆宏, 朱大勇, 雷先顺, 吴迎雷. 无黏性土斜坡地基承载力模型试验研究[J]. 岩土工程学报, 2014, 36(7): 1271-1280. DOI: 10.11779/CJGE201407011
引用本文: 马庆宏, 朱大勇, 雷先顺, 吴迎雷. 无黏性土斜坡地基承载力模型试验研究[J]. 岩土工程学报, 2014, 36(7): 1271-1280. DOI: 10.11779/CJGE201407011
MA Qing-hong, ZHU Da-yong, LEI Xian-shun, WU Ying-lei. Model tests on bearing capacity of footing on sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1271-1280. DOI: 10.11779/CJGE201407011
Citation: MA Qing-hong, ZHU Da-yong, LEI Xian-shun, WU Ying-lei. Model tests on bearing capacity of footing on sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1271-1280. DOI: 10.11779/CJGE201407011

无黏性土斜坡地基承载力模型试验研究  English Version

基金项目: 国家自然科学基金项目(51078123,51179043)
详细信息
    作者简介:

    马庆宏(1987- ),男,浙江建德人,硕士研究生,从事地基承载力理论研究。E-mail: mqinghong@126.com。

    通讯作者:

    朱大勇

Model tests on bearing capacity of footing on sand slopes

  • 摘要: 采用缩尺模型试验对砂土斜坡地基的土压力分布、变形机制、破坏模式进行探索,并研究了斜坡坡角、基础尺寸、相对密度、基础形状对斜坡地基破坏形态及极限承载力的影响。结果表明:斜坡地基的破坏模式与Choudhury提出的破坏模式相近,破坏区域由不对称楔体、辐射向剪切区、被动楔体组成。斜坡地基的破坏区域长度随斜坡坡角、基础尺寸的增大而增大,但不随相对密度的变化而变化;而斜坡地基的极限承载力随斜坡坡角的增大而减小,随基础宽度、相对密度的增大而增大。对相同尺寸的基础而言,方形基础下的地基极限承载力和破坏区域长度均大于圆形基础。试验研究成果对斜坡地基变形特征、破坏形态和斜坡地基承载力影响因素的探究具有一定理论参考价值。
    Abstract: The earth pressure distribution, deformation mechanism and failure mechanism of the foundation on a sand slope are studied by small-scale model tests in the laboratory. The effects of slope angle, footing width, relative density of sand and footing shape on the ultimate bearing capacity and the failure mechanism of footing on the sand slope are investigated. The results show that the slope failure mechanism is similar to Choudhury's failure mechanism, in which the failure zones consist of asymmetric wedge zone, radial shear zone and passive wedge zone. The ultimate bearing capacity of footing on the slope decreases by the accretion of angle of the slope inclination and increases by the rising of footing width and relative density of sand. The failure zone length grows with the enlargement of angle of the slope inclination and footing width, and is hardly affected by the relative density of sand. The bearing capacity and failure zone length of square footings are larger than those of circular ones with the same size. Theoretically, the experimental results contribute to the researches on deformation characteristics and failure mechanism as well as the affecting factors for bearing capacity of the footings on slopes.
  • [1] MEYERHOFF G G. The ultimate bearing capacity of foundations on slopes[C]// Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering Vol.1. London: Saunders College Publishing, 1957: 384-386.
    [2] NARITA K, YAMAGUCHI H. Bearing capacity analysis of foundations on slopes by use of log-spiral sliding surfaces[J]. Soils and Foundations, 1990, 30(3): 144-152.
    [3] CASTELLI F, MOTTA E. Bearing capacity of strip footings near slopes[J]. Geotechnical and Geological Engineering, 2010, 28(2): 187-198.
    [4] CHENG C F, DONG W Z, TANG Y Z. Seismic ultimate bearing capacity of strip footings on slope[J]. Journal of Central South University of Technology, 2007, 14(5): 730-736.
    [5] GEORGIADIS K. An upper-bound solution for the undrained bearing capacity of strip footings at the top of a slope[J]. Géotechnique, 2010, 60(10): 801-806.
    [6] 杨 峰, 阳军生, 张学民, 等. 斜坡地基单侧滑移破坏模式及承载力上限解[J]. 工程力学, 2010, 27(6): 162-168. (YANG Feng, YANG Jun-sheng, ZHANG Xue-ming, et al. One-side slip failure mechanism and upper bound solution for bearing capacity of foundation on slope[J]. Engineering Mechanics, 2010, 27(6): 162-168. (in Chinese))
    [7] DE BUHAN P, GARNIER D. Three-dimensional bearing capacity analysis of a foundation near a slope[J]. Soils and Foundations, 1998, 38(3): 153-163.
    [8] GEORGIADIS K. Undrained bearing capacity of strip footings on slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 136(5): 677-685.
    [9] GEORGIADIS K. The influence of load inclination on the undrained bearing capacity of strip footings on slopes[J]. Computers and Geotechnics, 2010, 37(3): 311-322.
    [10] 尉学勇, 王晓谋, 怀 超. 斜坡地基极限承载力上限解计算与分析[J]. 岩土工程学报, 2010, 32(3): 381-387. (WEI Xue-yong, WANG Xiao-mou, HUAI Chao. Calculation and analysis of upper limit solution of ultimate bearing capacity of sloping ground[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 381-387. (in Chinese))
    [11] CHOUDHURY D, SUBBA RAO K S. Seismic bearing capacity of shallow strip footings embedded in slope[J]. International Journal of Geomechanics, 2006, 6(3): 176-184.
    [12] YANG X L, WANG Z B, ZOU J F, et al. Bearing capacity of foundation on slope determined by energy dissipation method and model experiments[J]. Journal of Central South University of Technology, 2007, 14(1): 125-128.
    [13] SHIELDS D, SCOTT J, BAUER G, et al. Bearing capacity of foundations near slopes[J]. Canadian Geotechnical Journal, 1974(2): 715-720.
    [14] SHIELDS D, CHANDLER N, GARNIER J. Bearing capacity of foundations in slopes[J]. Leadership and Management in Engineering, 1990, 116(3): 528-537.
    [15] GARNIER J, SHIELDS D. Foundations at the top of slopes[C]// DeMello Volume of the 12th International Conference of the International Society of Soil Mechanics and Foundation Engineers. Rotterdam: Balkema Publishers, 1989: 411-422.
    [16] GEMPERLINE M C. Centrifugal model tests for ultimate bearing capacity of footings on steep slopes in cohesionless soil[D]. Colorado: University of Colorado, 1983.
    [17] KESKIN M S, LAMAN M. Model studies of bearing capacity of strip footing on sand slope[J]. KSCE Journal of Civil Engineering, 2013, 17(4): 699-711.
    [18] KUSAKABE O, KIMURA T, YAMAGUCHI H. Bearing capacity of slopes under strip load on the surfaces[J]. Soils and Foundations, 1981, 21(4): 29-40.
    [19] 杨俊杰. 相似理论与结构模型试验[M]. 武汉:武汉理工大学出版社, 2005. (YANG Jun-jie. Similarity theory and construction model experiment[M]. Wuhan: Wuhan University of Technology Press, 2005. (in Chinese))
    [20] 闫芙蓉, 范 文, 王 勇, 等. 黏性土地基的破坏模式试验研究[J]. 岩石力学与工程学报, 2008, 27(增刊2): 3998-4003. (YAN Fu-rong, FAN Wen, WANG Yong, et al. Experimental study on failure mode of clayey soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S2): 3998-4003. (in Chinese))
    [21] 杨宇友, 张钦喜, 张在明, 等. 量纲分析法在土工模型试验中的应用[J]. 北京工业大学学报, 2009, 35(6): 785-789. (YANG Yu-you, ZHANG Qin-xi, ZHANG Zai-ming, et al. The application research of dimensional analysis in model experiment of geotechnical engineering[J]. Journal of Beijing University of Technology, 2009, 35(6): 785-789. (in Chinese))
    [22] 柳 飞. 砂土地基承载力离心模型试验研究[D]. 青岛: 中国海洋大学, 2007. (LIU Fei. Study on bearing capacity of sandy ground by centrifugaI model test[D]. Qingdao: College of Enviromental Science and Engineering, 2007. (in Chinese))
    [23] SL237—1999 土工试验规程[S]. 1999. (SL237—1999 Specification of soil test[S]. 1999. (in Chinese))
    [24] 龚晓南. 土力学[M]. 北京: 中国建筑工业出版社, 2002: 186-187. (GONG Xiao-nan. Soil mechanics[M]. Beijing: China Architecture and Building Press, 2002: 186-187. (in Chinese))
    [25] TERZAGHI K. Theoretical soil mechanics[M]. New York: Wiley, 1943.
    [26] SARAN S, SUD V K, HANDA S C. Bearing capacity of footings adjacent to slopes[J]. Journal of Geotechnical Engineering, 1989, 115(4): 553-573.
    [27] ZHU D Y. The least upper-bound solutions for bearing capacity factor N γ [J]. Soils and Foundations, 2000, 40(1): 123-129.
计量
  • 文章访问数:  559
  • HTML全文浏览量:  3
  • PDF下载量:  489
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-28
  • 发布日期:  2014-07-24

目录

    /

    返回文章
    返回