基于并行改进遗传算法的三维电阻率反演方法

    刘斌, 王传武, 杨为民, 李术才, 聂利超, 宋杰

    刘斌, 王传武, 杨为民, 李术才, 聂利超, 宋杰. 基于并行改进遗传算法的三维电阻率反演方法[J]. 岩土工程学报, 2014, 36(7): 1252-1261. DOI: 10.11779/CJGE201407009
    引用本文: 刘斌, 王传武, 杨为民, 李术才, 聂利超, 宋杰. 基于并行改进遗传算法的三维电阻率反演方法[J]. 岩土工程学报, 2014, 36(7): 1252-1261. DOI: 10.11779/CJGE201407009
    LIU Bin, WANG Chuan-wu, YANG Wei-min, LI Shu-cai, NIE Li-chao, SONG Jie. 3D resistivity inversion using improved parallel genetic algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1252-1261. DOI: 10.11779/CJGE201407009
    Citation: LIU Bin, WANG Chuan-wu, YANG Wei-min, LI Shu-cai, NIE Li-chao, SONG Jie. 3D resistivity inversion using improved parallel genetic algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1252-1261. DOI: 10.11779/CJGE201407009

    基于并行改进遗传算法的三维电阻率反演方法  English Version

    基金项目: 国家重点基础研究发展计划(973计划)(2013CB036002,2014CB046901); 国家重大科研仪器设备研制专项(51327802); 国家自然科学基金重点项目(51139004); 国家自然科学基金青年项目(41102183); 高等学校博士学科点专项科研基金项目(新教师类)(20110131120070)
    详细信息
      作者简介:

      刘 斌(1983- ),男,山东高唐人,副教授,硕士生导师,从事岩土工程与勘探地球物理研究。E-mail: liubin0635@163.com。

      通讯作者:

      杨为民

    3D resistivity inversion using improved parallel genetic algorithm

    • 摘要: 计算效率极低是阻碍遗传算法用于三维电阻率反演的瓶颈,使得很多对改善反演效果和搜索质量有利但又很耗时的改进方法无法应用到遗传算法中。针对上述问题,基于遗传算法天然的并行计算特性,提出了新的多重主从并行计算策略及其算法。提出了初始群体的严格均布产生方法,以提高初始群体接近最优解的概率;提出了基于交叉个体适应度差异的比例随机算术交叉算法,以保证优良个体的遗传竞争优势;建立了混合变异算法,将传统的随机变异算法与线性反演中确定性搜索优化算法相结合,即保持了变异的随机性又控制了优化方向。最后将并行改进遗传算法用于合成算例和实际应用案例中,发现并行改进遗传算法的计算效率显著提高,且在寻找最优解、压制假异常、提高反演效果方面具有明显优势,为实际工程中电阻率探测的三维成像提供了有效途径。
      Abstract: The low calculation efficiency of the genetic algorithm (GA) method is an obstacle to 3D resistivity inversion. Moreover, some improved methods which are time-consuming but beneficial for the inversion effect and the search efficiency can not be used in GA due to their low calculation efficiencies. To solve the above problems, a multi-level master-slave parallel computing strategy for GA is put forward based on the natural characteristics of parallel computing. Through this improvement, a generating method for strictly uniform initial population is proposed, with which the initial generation can be closer to the optimal solution. A random-ratio arithmetical crossover algorithm is proposed based on the differences of fitness values between the cross-individuals, which can keep genetic competition advantages of the better individual. Then the joint mutation algorithm is presented, which is the combination of the traditional random mutation algorithm and the deterministic search optimization algorithm in the linear inversion. It can maintain the randomness of the mutation and optimize the mutation direction. Eventually a 3D resistivity inversion using an improved parallelized GA is formed. The performance of the improved parallel GA is evaluated in synthetic and practical cases. The examples illustrate that the improved parallel GA can enhance the calculation efficiency significantly and has obvious advantages in searching the optimal solution, suppressing the false anomaly and obtaining high-quality inversion results. The improved parallel GA provides an effective way for 3D resistivity inversion imaging in practical projects.
    • [1] SASAKI Yutaka. 3D resisitivity inversion using the finite- element method[J]. Geophysics, 1994, 59(11): 1839-1848.
      [2] 黄俊革, 阮百尧, 鲍光淑. 基于有限单元法的三维地电断面电阻率反演[J]. 中南大学学报(自然科学版), 2004, 35(2): 295-299. (HUANG Jun-ge, RUAN Bai-yao, BAO Guang-shu. Resistivity inversion on 3D section based on FEM[J]. Journal of Central South University (Natural Science), 2004, 35(2): 295-299. (in Chinese))
      [3] 底青云, 王妙月. 积分法三维电阻率成像[J]. 地球物理学报, 2001, 44(6): 843-852. (DI Qing-yun, WANG Miao-yue. 3-D resistivity tomography by integral method[J]. Chinese Journal of Geophysics, 2001, 44(6): 843-852. (in Chinese))
      [4] ZHANG Jie, RANDALL L Mackie, THEODORE R. Madden.3-D resistivity forward modeling and inversion using conjugate gradients[J]. Geophysics, 2008, 60(5): 1313-1325.
      [5] 吴小平, 徐果明. 利用共轭度法的电阻率三维反演研究[J].地球物理学报, 2000, 43(3): 420-426. (WU Xiao-ping, XU Guo-ming. Study on 3D resistivity inversion using conjugate gradient method[J]. Chinese Journal of Geophysics, 2000, 43(3): 420-426. (in Chinese))
      [6] 宛新林, 席道瑛, 高尔根, 等. 用改进的光滑约束最小二乘正交分解法实现电阻率三维反演[J]. 地球物理学报, 2005, 48(1): 439-444. (WAN Xin-lin, XI Dao-ying, GAO Er-gen, et al. 3-D resistivity inversion by the least-squares QR factorization method under improved smoothness constraint condition[J]. Chinese Journal of Geophysics, 2005, 48(1): 439-444. (in Chinese))
      [7] 刘 斌, 李术才, 李树忱, 等. 基于不等式约束的最小二乘法三维电阻率反演及其算法优化[J]. 地球物理学报, 2012, 55(1): 260-268. (LIU Bin, LI Shu-cai, LI Shu-chen, et al. 3D electrical resistivity inversion with least-squares method based on inequality constraint and its computation efficiency optimization[J]. Chinese Journal of Geophysics, 2012, 55(1): 260-268. (in Chinese))
      [8] 刘 斌, 李术才, 聂利超, 等. 基于自适应加权光滑约束与PCG算法的三维电阻率探测反演成像[J]. 岩土工程学报, 2012, 34(9): 1646-1653. (LIU Bin, LI Shu-cai, NIE Li-chao, et al. Inversion imaging of 3D resistivity detection using adaptive-weighted smooth constraint and PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1646-1653. (in Chinese))
      [9] JIMMY Stephen, MANOJ C, SINGH S B. A direct inversion scheme for deep resistivity sounding data using artificial neural networks[J]. Journal of Earth System Science, 2004, 113(1): 49-66.
      [10] SINGH U K, TIWARI R K, SINGH S B. One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks—a case study[J]. Computers & Geosciences, 2005, 31(1): 99-108.
      [11] SINGH U K, TIWARI R K, SINGH S B. Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network[J]. Nonlin Processes Geophys, 2010, 17: 65-76.
      [12] 徐海浪, 吴小平. 电阻率二维神经网络反演[J]. 地球物理学报, 2006, 49(2): 584-589. (XU Hai-lang, WU Xiao-ping. 2D resistivity inversion using the neural network method[J]. Chinese Journal of Geophysics, 2006, 49(2): 584-589. (in Chinese))
      [13] EL-QADY G, USHIJIMA K. Inversion of DC resistivity data using neural networks[J]. Geophysical Prospecting, 2001, 49: 417-430.
      [14] DITTMER J K, SZYMANSKI J E. The stochastic inversion of magnetic and resistivity data using the simulated annealing algorithm[J]. Geophysical Prospecting, 1995, 43: 397-416.
      [15] 卢元林, 王兴泰, 王 若, 等. 电阻率成像反演中的模拟退火方法[J]. 地球物理学报, 1999, 42(增刊1): 225-233. (LU Yuan-lin, WANG Xing-tai, WANG Ruo, et al. The simulated annealing method of electrical resistivity tomography[J]. Chinese Journal of Geophysics, 1999, 42(S1): 225-233. (in Chinese))
      [16] CHUNDURU R K, SEN M K, STOFFA P L, et al. Nonlinear inversion of resistivity profiling data for some regular geometrical bodies[J]. Geophysical Prospecting, 1995, 43(8): 979-003.
      [17] CHUNDURU R K, SEN M K, STOFFA P L. 2-D resistivity inversion using spline parameterization and simulated annealing[J]. Geophysics, 1996, 61(1): 151-161.
      [18] SEN M K, BHATTACHARYA B B, STOFFA P L. Nonlinear inversion of resitivity sounding data[J]. Geophysics, 1993, 58(4): 496-507.
      [19] 王兴泰, 李晓芹, 孙仁国. 电测深曲线的遗传算法反演[J].地球物理学报, 1996, 39(2): 279-285. (WANG Xing-tai, LI Xiao-qin, SUN Ren-guo. The inversion of resistivity sounding curve using genetic algorithm[J]. Chinese Journal of Geophysics, 1996, 39(2): 279-285. (in Chinese))
      [20] 李帝铨, 王光杰, 底青云, 等. 基于遗传算法的CSAMT最小构造反演[J]. 地球物理学报, 2008, 51(4): 1234-1245. (LI Di-quan, WANG Guang-jie, DI Qing-yun, et al. The application of Genetic Algorithm to CSAMT inversion for minimum structure[J]. Chinese Journal of Geophysics, 2008, 51(4): 1234-1245. (in Chinese))
      [21] MADAN K Jha, KUMAR S, CHOWDHURY A. Vertical electrical sounding survey and resistivity inversion using genetic algorithm optimization technique[J]. Journal of Hydrology, 2008, 359: 71-87.
      [22] 闫永利, 陈本池, 赵永贵, 等. 电阻率层析成像非线性反演[J]. 地球物理学报, 2009, 52(3): 758-764. (YAN Yong-li, CHEN Ben-chi, ZHAO Yong-gui, et al. Nonlinear inversion for electrical resistivity tomography[J]. Chinese Journal of Geophysics, 2009, 52(3): 758-764. (in Chinese))
      [23] BAŞOKUR A T, AKCA I. Object-based model verification by a genetic algorithm approach: Application in archeological targets[J]. Journal of Applied Geophysics, 2011, 74(4): 167-174.
      [24] BOSCHETTI F, DENTITH M C, LIST R D. Inversion of potential field data by Genetic Algorithms[J]. Geophysical Prospecting, 1997, 45(3): 461-478.
      [25] LIU B, LI S C, NIE L C, et al. 3D resistivity inversion using an improved Genetic Algorithm based on control method of mutation direction[J]. Journal of Applied Geophysics, 2012, 87: 1-8.
      [26] 王小平, 曹立明. 遗传算法——理论、应用与软件实现[M]. 西安: 西南交通大学出版社, 2002. (WANG Xiao-ping, CAO Li-ming. Genetic algorithm—theory, application and software[M]. Xi'an: Xi'an Jiaotong University Press, 2002. (in Chinese))
      [27] 姚磊华, 李竞生. 综合改进的遗传算法反演三维地下水流模型参数[J]. 岩石力学与工程学报, 2004, 23(4): 625-630. (YAO Hua-lei, LI Jing-sheng. Parameters identification of 3D groundwater flow model with improved genetic algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 625-630. (in Chinese))
      [28] 刘耀儒, 杨 强, 刘福深, 等. 基于并行改进遗传算法的拱坝位移反分析[J]. 清华大学学报( 自然科学版), 2006, 46(9): 1542-1550. (LIU Yao-ru, YANG Qiang, LIU Fu-shen, et al. Inverse analyses of arch dam displacements using improved parallel genetic algorithm[J]. Journal of TSinghua University (Science and Technology), 2006, 46(9): 1542-1550. (in Chinese))
      [29] 张志增, 李仲奎, 程丽娟. 基于主从式并行遗传算法的岩土力学参数反分析方法[J]. 工程力学, 2010, 27(10): 21-26. (ZHANG Zhi-zeng, LI Zhong-kui, CHENG Li-juan. Back analysis on geomechanical parameters based on a master-slave parallel genetic algorithm[J]. Engineering Mechanics, 2010, 27(10): 21-26. (in Chinese))
      [30] 何大阔, 王福利, 贾明兴. 遗传算法初始种群与操作参数的均匀设计[J]. 东北大学学报: 自然科学版, 2005, 26(9): 828-831. (HE Da-kuo, WANG Fu-li, JIA Ming-xing. Uniform design of initial population and operatinal parameters of genetic algorithm[J]. Journal of Northeastern University: Natural Science, 2005, 26(9): 828-831. (in Chinese))
      [31] 雷 轶, 菊 覃, 红邹娜. 折叠反转设计的中心化L: 偏差值的一些下界[J]. 数学物理学报, 2010, A30(6): 1555-1561. (LEI Y J, QIN H, ZOU N. Some lower bounds of centered L2-discrepancy on foldover designs[J]. Acta Mathematica Scientia, 2010, A30(6): 1555-1561. (in Chinese))
      [32] 谭桂华, 聂建新, 杜 祥, 等. 小生境遗传算法在井间走时地震层析成像中的应用[J]. 工程力学, 2004, 21(4): 97-100. (TAN Gui-hua, NIE Jian-xin, DU Xiang, et al. Crosshole seismic velocity tomography based on niche genetic algorithms and QLTI[J]. Engineering Mechanics, 2004, 21(4): 97-100. (in Chinese))
      [33] 刘 斌. 基于电阻率法与激电法的隧道含水地质构造超前探测与突水灾害实时监测研究[D]. 济南: 山东大学, 2010. (LIU Bin. Study on the water-bearing structure advanced detection and water inrush hazards real-time monitoring in tunnel based on the electrical resistivity method and induced polarization method[D]. Jinan: Shandong University, 2010. (in Chinese))
    • 期刊类型引用(6)

      1. 窦林名,曹安业,杨耀,贺虎,杨垚鑫,白贤栖,顾倩悦,李松徽,付相超,顾颖诗,吴震,张帝. 巨厚覆岩矿震孕育破裂特征与应力触发机制. 煤田地质与勘探. 2024(10): 1-13 . 百度学术
      2. 李新旺,温学君,代卫林,程立朝,孙利辉. 大埋深倾斜厚煤层下导水裂隙带发育高度的微震监测. 中国科技论文. 2023(05): 526-533 . 百度学术
      3. 朱全海. 面向水坝变形与应力监测的混合模型构建研究. 中国新技术新产品. 2023(07): 122-124 . 百度学术
      4. 刘开航,冯磊,云美厚,曹运兴,田林. 煤层顶板高地应力区对微震层析反演的影响. 煤田地质与勘探. 2023(07): 174-183 . 百度学术
      5. 刘洋,陆菜平,王华,郭英,肖自义,夏磊,王超. 不规则煤柱变形破坏机理矩张量反演研究. 采矿与安全工程学报. 2023(06): 1201-1209 . 百度学术
      6. 石峰,张达,吴亚飞,李坤,王平. 矿山开采过程地压活动综合评价分析. 有色金属(矿山部分). 2022(05): 31-36 . 百度学术

      其他类型引用(6)

    计量
    • 文章访问数:  524
    • HTML全文浏览量:  1
    • PDF下载量:  378
    • 被引次数: 12
    出版历程
    • 收稿日期:  2013-10-04
    • 发布日期:  2014-07-24

    目录

      /

      返回文章
      返回