[1] |
LEROUEIL S, TAVENAS F, BRUCY F, et al. Behavior of destructured natural clays[J]. Journal of the Geotechnical Engineering Division, ASCE, 1979, 105(6): 759-778.
|
[2] |
BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378.
|
[3] |
CHANDLER R J. Clay sediments in depositional basin: the geotechnical cycle[J]. The Quarterly Journal of Engineering Geology and Hydrogeology, 2000, 33(1): 7-39.
|
[4] |
COTECCHIA F, CHANDLER R J. A general framework for the mechanical behaviour of clays[J]. Géotechnique, 2000, 50(4): 431-447.
|
[5] |
沈珠江. 土体结构性的数学模型——21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95-97. (SHEN Zhu-jiang. The mathematical model for the structural soil ——the key problem of soil mechanics in the 21st century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97. (in Chinese))
|
[6] |
HONG Z S. Correlating compression properties of sensitive clays using void index[J]. Géotechnique, 2006, 56(8): 573-577.
|
[7] |
LIU M D, CARTER J P. A structure Cam clay model[J]. Canadian Geotechnical Journal, 2002, 39(6): 1313-1332.
|
[8] |
HONG Z S, BIAN X, CUI Y J, et al. Effect of initial water content on undrained shear behaviour of reconstituted clays[J]. Géotechnique, 2013, 63(6): 441-450.
|
[9] |
卞夏, 洪振舜, 蔡正银, 等. 重塑黏土临界状态线随初始水率的变化规律[J]. 岩土工程学报, 2013, 35(1): 164-169. (BIAN Xia, HONG Zhen-shun, CAI Zheng-yin, et al. Change of critical state lines of reconstituted clays with initial water contents[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 164-169. (in Chinese))
|
[10] |
HONG Z S, YIN J, CUI Y J. Compression behaviour of reconstituted soils at high initial water contents[J]. Géotechnique, 2010, 60(9): 691-700.
|
[11] |
MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. 3rd ed. John Wiley & Sons, Inc. 2005.
|
[12] |
HONG Z S, ZENG L L, CUI Y, et al. Compression behaviour of natural and reconstituted clays[J]. Géotechnique, 2012, 62(4): 291-301.
|