• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

甲烷水合物三维离散元模拟参数反演初探

蒋明镜, 贺洁, 申志福

蒋明镜, 贺洁, 申志福. 甲烷水合物三维离散元模拟参数反演初探[J]. 岩土工程学报, 2014, 36(4): 736-744. DOI: 10.11779/CJGE201404019
引用本文: 蒋明镜, 贺洁, 申志福. 甲烷水合物三维离散元模拟参数反演初探[J]. 岩土工程学报, 2014, 36(4): 736-744. DOI: 10.11779/CJGE201404019
JIANG Ming-jing, HE Jie, SHEN Zhi-fu. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 736-744. DOI: 10.11779/CJGE201404019
Citation: JIANG Ming-jing, HE Jie, SHEN Zhi-fu. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 736-744. DOI: 10.11779/CJGE201404019

甲烷水合物三维离散元模拟参数反演初探  English Version

基金项目: 国家杰出青年基金项目(51025932); 教育部博士点基金; 项目(2010007211008); 国家自然科学重点基金项目(51239010)
详细信息
    作者简介:

    蒋明镜(1965- ),男,教授,博士生导师,主要从事天然结构性黏土、砂土、非饱和土的宏、微观试验、本构模型和数值分析方面的研究以及土体渐进破坏分析,并从事相关的教学工作。E-mail: mingjing.jiang@tongji.edu.cn。

  • 中图分类号: TU41

Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate

  • 摘要: 含填充型水合物的砂性能源土可视为特殊的散粒体材料(砂粒和水合物颗粒混合物),具有明显的非连续特征。在离散元中若采用团粒(胶结成团的颗粒组)模拟填充水合物颗粒则需合理确定团粒结构内颗粒间胶结模型参数。为此,基于前人的室内纯水合物三轴试验资料进行离散元建模与参数反演。结果表明,宜采用松散且颗粒间摩擦系数较小的试样模拟水合物块体,当颗粒间摩擦系数小于等于0.0时,可确保无胶结试样的内摩擦角小于室内试验获得的纯水合物内摩擦角。胶结刚度只需在较小范围变化即可反映相同温度不同围压条件下的弹性特性,且微观刚度参数与胶结强度参数的相互作用较小,可以假定二者相互独立。通过选取不同的微观胶结强度值进行不同围压下的三轴压缩试验,建立微观胶结强度参数与宏观参数(内摩擦角和黏聚力)之间的关系,从而确定与室内试验强度特性相符合的微观胶结强度值,实现甲烷水合物三轴试验离散元模拟;由体变规律可知,甲烷水合物在发生剪胀前均存在一个初始的体积收缩阶段,且剪胀特性随着围压的减小而呈现增强趋势。通过微观变量颗粒接触方向组构的分布图可知,随着轴向应变增大,颗粒间接触主方向朝竖直方向偏转,表现出明显的各向异性特性。随着轴向应变的增大,颗粒间胶结残余率变小,表明试样逐步破坏。
    Abstract: Marine sandy sediments containing pore-filling type methane hydrate particles can be considered as a class of special granular materials which present apparent discontinuity characteristics. To numerically simulate such materials, the distinct element method (DEM) can be used by modeling methane hydrate particles as groups of spheres cemented together and filled into the pores of soil skeleton. The model parameters for inter-particle bonds within an individual hydrate particle are investigated through parameter inversion against the existing laboratory triaxial compression (TC) test results of methane hydrate blocks under various confining pressures. The results indicate that a loose packing with low inter-particle friction needs to be used for the simulated methane hydrate block. When the inter-particle friction coefficient is equal to or less than 0.0, the friction angle obtained from the unbounded sample is less than that of the experimental tests. The bond stiffness varying in a very small range can adequately capture the elastic behavior of methane hydrate under different confining pressures at the same temperature. Because the interaction between stiffness parameters and bond strength parameters is small, it is assumed that the two types of parameters should be independent. The relationships between micro bond strength parameters and macro parameters (internal friction angle and cohesion) are established by conducting TC tests on choosing different micro bond strength parameters. The methane hydrate shows volume contraction, then dilatancy. And the characteristic dilatancy increases with the decrease of the confining pressure. With the increase of the axial strain, the grain contact direction deflects
  • [1] BIRCHWOOD R, DAI J, SHELANDER D, et al. Developments in gas hydrates[J]. Oilfield Review, 2010, 22(1): 18-33.
    [2] KVENVOLDEN K A, LORENSON T D. The global occurrence of natural gas hydrate[M]// Natural Gas Hydrates: Occurrence, Distribution, and Detection. Washington:American Geophysical Union, 2001.
    [3] BRUGADA J, CHENG Y P, SOGA K, et al. Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution[J]. Granular Matter, 2010, 12(5): 517-525.
    [4] HACISALIHOGLU B, DEMIRBAS A H, HACISALIHOGLU S. Hydrogen from gas hydrate and hydrogen sulfide in the black sea[J]. Energy Education Science and Technology, 2008, 21(1/2): 108.
    [5] Committee on Assessment of the Department of Energy's Methane Hydrate Research and Development Program: Evaluating Methane Hydrate as a Future Energy Resource. Committee on Earth Resources. Board on Earth Sciences and Resources. Division on Earth and Life Studies. National Research Council of the National Academies. Realizing the energy potential of methane hydrate for the United States[R]. Washington: the National Academies Press, 2010.
    [6] NIXON M F, GROZIC J L H. Submarine slope failure due to hydrate dissociation: a preliminary quantification[J]. Canadian Geotechnical Journal, 2007, 44(3): 314-325.
    [7] SOGA K, LEE S L, NG M Y A, et al. Characterisation and engineering properties of methane hydrate soils[J]. Characterisation and Engineering Properties of Natural Soils, 2007, 3: 2591-642.
    [8] WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003.
    [9] UCHIDA S, SOGA K, YAMAMOTO K. Critical state soil constitutive model for methane hydrate soil[J]. Journal of Geophysical Research, 2012, 117(B3): B03209.
    [10] WAITE W F, WINTERS W J, MASON D H. Methane hydrate formation in partially water-saturated Ottawa sand[J]. American Mineralogist, 2004, 89(8/9): 1202-1207.
    [11] HYODO M, NAKATA Y, YOSHIMOTO N, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Japanese Geotechnical Society, 2005, 45(1): 75-85.
    [12] WINTERS W J, PECHER I A, WAITE W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate[J]. American Mineralogist, 2004, 89(8/9): 1221-1227.
    [13] MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial Compressive properties of artificial methane-hydrate-bearing sediment[J]. Journal of Geophysical Research, 2011, 116, B06102.
    [14] 张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质试验研究[J]. 岩土力学, 2010, 31(10): 3069-3074. (ZHANG Xu-hui, WANG Shu-yun, LI Qing-ping, et al. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 2011, 31(10): 3069-3074. (in Chinese))
    [15] 张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 2010, 31(10): 3069-3074. (ZHANG Xu-hui, WANG Shu-yun, LI Qing-ping, et al. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 2010, 31(10): 3069-3074. (in Chinese))
    [16] 颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报. 2012, 34(7): 1234-1240. (YAN Rong-tao, WEI Chang-fu, WEI Hou-zhen, et al. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J], Chinese Journal of Geotechnical Engineering , 2012, 34(7): 1234-1240. (in Chinese))
    [17] CUNDALL P A, STRACK O D L. The discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [18] JIANG M J, SUN Y G, YANG Q J. A simple distinct element modeling of the mechanical behavior of methane hydrate-bearing sediments in deep seabed[J]. Granular Matter, 2013, 15(2): 209-220.
    [19] 蒋明镜, 肖俞, 朱方园. 深海能源土宏观力学性质离散元数值模拟分析[J].岩土工程学报, 2013, 35(1): 157-163. (JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate bearing soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163. (in Chinese))
    [20] SONG Y C, YU F, LI Y H, et al. Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of Natural Gas Chemistry, 2010, 19: 246-50.
    [21] YU F, SONG Y C, LIU W G, et al. Analyses of stress strain behavior and constitutive model of artificial methane hydrate[J]. Journal of Petroleum Science and Engineering, 2011, 77(2): 183-188.
    [22] Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 Dimensions)[M]. Version 3.0. Minneapolis, MN: ICG; 2002.
    [23] POTYONDY D, CUNDALL P. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
    [24] WANG J, YAN H. DEM analysis of energy dissipation in crushable soils[J]. Soils and Foundations, 2012, 52(4): 644-657.
    [25] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597.
    [26] ODA M, IWASHITA K. Mechanics of granular materials[M]. Netherlands: A A Balkema, 1999: 1-80.
    [27] NABESHIMA Y, TAKAI Y, KOMAI T. Compressive strength and density of methane hydrate[C]// Proceedings of the Sixth ISOPE Ocean Mining Symposium. Changsha, 2005.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-02
  • 发布日期:  2014-04-21

目录

    /

    返回文章
    返回