• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

岩质边坡断续裂隙阶梯状滑移模式及稳定性计算

岑夺丰, 黄达, 黄润秋

岑夺丰, 黄达, 黄润秋. 岩质边坡断续裂隙阶梯状滑移模式及稳定性计算[J]. 岩土工程学报, 2014, 36(4): 695-706. DOI: 10.11779/CJGE201404014
引用本文: 岑夺丰, 黄达, 黄润秋. 岩质边坡断续裂隙阶梯状滑移模式及稳定性计算[J]. 岩土工程学报, 2014, 36(4): 695-706. DOI: 10.11779/CJGE201404014
CEN Duo-feng, HUANG Da, HUANG Run-qiu. Step-path failure mode and stability calculation of jointed rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 695-706. DOI: 10.11779/CJGE201404014
Citation: CEN Duo-feng, HUANG Da, HUANG Run-qiu. Step-path failure mode and stability calculation of jointed rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 695-706. DOI: 10.11779/CJGE201404014

岩质边坡断续裂隙阶梯状滑移模式及稳定性计算  English Version

基金项目: 国家自然科学基金面上项目(117223); 国家自然科学基金重点项目(113075); 中央高校基本科研业务费重点项目(CDJZR12205501); 地质灾害防治与地质环境保护国家重点实验室开放基金项目(SKLGP2011K003)
详细信息
    作者简介:

    岑夺丰(1987- ),男,浙江慈溪人,博士研究生,主要从事岩体力学与工程方向的科研工作。E-mail: cdfschool@126.com。

    通讯作者:

    黄达

  • 中图分类号: TU45

Step-path failure mode and stability calculation of jointed rock slopes

  • 摘要: 阶梯状滑移破坏是一类典型岩质边坡破坏失稳模式。在总结断续裂隙阶梯状滑移的岩质边坡地质结构特征的基础上,利用离散元二维颗粒流程序(PFC2D)模拟研究了边坡阶梯状滑移破裂模式及其演化过程。边坡岩桥可归纳为剪切贯通破坏、张拉贯通破坏及张–剪混合贯通破坏3类。通过岩石细观颗粒黏结力场、岩桥段应力及破裂贯通演化分析,揭示了重力作用下阶梯状滑移是从下而上岩桥逐个渐进性破裂贯通演化的过程,坡体后缘张裂纹发展贯通是下部坡体的牵拉作用造成;以缓倾角阶梯状平行裂隙边坡(岩桥倾角90°,裂隙倾角30°)为例,阶梯状滑移过程大致可分为坡体弹性稳定变形、下部岩桥贯通破坏、中上部岩桥贯通–后缘张裂、整体沿贯通面滑移共个阶段,其中第3个阶段坡体微断裂数急剧增加,为滑裂带扩展至贯通的临界失稳状态。基于滑移模式及其演化过程的认识,建立了岩桥剪切贯通、张拉贯通和张–剪混合贯通三类阶梯状滑移边坡稳定性计算理论模型,推导了考虑岩桥强度和贯通率的边坡安全系数极限平衡计算公式。
    Abstract: Step-path failure is a kind of typical instability mode in rock slopes. Based on the summary of geological structural features of jointed rock slopes, the step-path failure mode and evolution process are studied by using the discrete element method, particle flow code in two dimensions (PFC2D). Three rock bridge failure modes in slopes can be summarized: tensile coalescence, shear coalescence and mixed tensile-shear coalescence. Through the evolution analysis of the rock mesoscopic particle bond force vector field, stress state of rock bridges and rock bridge failure, the progressive step-path failure process that rock bridge fractures one by one from the bottom up under the action of gravity is revealed, and the tensile crack development in the trailing edge of slope is due to the traction of lower part of slope. Take the slope with shallow dipping step-path parallel fissures for example (dip angle of rock bridge is 90°, and that of fissure is 30°), the step-path failure process can be distributed into four stages: elastic steady deformation of slope, failure of the lower rock bridges, failure of the upper rock bridges and development of tensile crack in the trailing edge of the slope, and the overall slipping of the slope along the failure surface. It is the critical state of instability at stage No. three that slip band sufficiently extends with micro-cracks expanding dramatically. Based on the understanding of failure modes and evolution process, three slope stability models for the step-path failure by shear coalescence, tensile coalescence and mixed tensile-shear coalescence of rock bridges are established, and the limit equilibrium formulae for the safety factor of slopes considering strength and coalescence coefficient of rock bridges are deduced.
  • [1] HOEK E, BRAY J. Rock slope engineering[M]. Revised 3rd ed. London: E and FN Spon, 1981.
    [2] CAMONES L A M, VARGAS Jr E A, DE FIGUEIREDO R P, et al. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism[J]. Engineering Geology, 2013, 153(2): 80-94.
    [3] 黄润秋. 岩石高边坡发育的动力过程及其稳定性控制[J]. 岩石力学与工程学报, 2008, 27(8): 1525-1544. (HUANG Run-qiu. Geodynamical process and stability control of high rock slope development[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1525-1544. (in Chinese))
    [4] BRIDEAU M A, YAN M, STEAD D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures[J]. Geomorphology, 2009, 103(1): 30-49.
    [5] JENNINGS J E. A mathematical theory for the calculation of the stability of slopes in open cast mine[C]// Proceedings of the Symposium on Planning Open Pit Mines(Johannesburg), 1970: 87-102.
    [6] BACZYNSKI N R P. STEPSIM4 “step-path” method for slope risks[C]// International Conference on Geotechnical and Geological Engineering(Australia), 2000: 86-92.
    [7] EINSTEIN H H, VENEZIANO D, BAECHER G. B et al. The effect of discontinuity persistence on rock slope stability[J]. Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1983, 20(5): 227-236.
    [8] MILLER S, WHYATT J, MCHUGH E. Applications of the point estimation method for stochastic rock slope engineering[C]// Gulf Rocks 2004: Proceedings, Rock Mechanics Across Borders and Disciplines, 6th North American Rock Mechanics Conference, Houston, Texas. ARMA/NARMS (04-517).
    [9] WONG L N Y, EINSTEIN H H. Crack coalescence inmolded gypsum and carrara marble: Part 1—Macroscopic observations and interpretation[J]. Rock Mechanics and Rock Engineering, 2009, 42(3): 475-511.
    [10] SAGONG M, BOBET A. Coalescence of multiple flaws in a rock-model material in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2): 229-241.
    [11] PRUDENCIO M, VAN SINT JAN M. Strength and failure modes of rock mass models with non-persistent joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 890-902.
    [12] Itasca Consulting Group Inc. PFC2D (particle flow code in 2D) theory and background[R]. Minnesota, USA: Itasca Consulting Group Inc, 2008.
    [13] 黄达, 岑夺丰. 单轴静-动相继压缩下单裂隙岩样力学响应及能量耗散机制颗粒流模拟[J]. 岩石力学与工程学报, 2013, 32(9): 1926-1936. (HUANG Da, CEN Duo-feng. Mechanical response and energy dissipation mechanism of rock specimen with a single fissure under static and dynamic uniaxial compression successively using particle flow code simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1926-1936. (in Chinese))
    [14] LEE H, JEON S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J]. International Journal of Solids and Structures, 2011, 48(6): 979-999.
    [15] ZHANG X P, WONG L N Y. Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach[J]. Rock Mechanics and Rock Engineering, 2013, 46(5): 1001-1021.
    [16] WANG C, TANNANT D D, LILLY P A. Numerical analysis of the stability of heavily jointed rock slopes using PFC2D[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3): 415-424.
    [17] 刘顺桂, 刘海宁, 王思敬, 等. 断续节理直剪试验与PFC2D数值模拟分析[J]. 岩石力学与工程学报, 2008, 27(9): 1828-1836. (LIU Shun-gui, LIU Hai-ning, WANG Si-jing, et al. Direct shear tests and PFC2D numerical simulation of intermittent joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1828-1836. (in Chinese))
    [18] 余华中, 阮怀宁, 褚卫江. 岩石节理剪切力学行为的颗粒流数值模拟[J]. 岩石力学与工程学报, 2013, 32(7): 1482-1490. (YU Hua-zhong, RUAN Huai-ning, CHU Wei-jiang. Particle flow code modeling of shear behavior of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1482-1490. (in Chinese))
    [19] BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical direct shear tests to model the shear behaviour of rock joints[J]. Computers and Geotechnics, 2013, 51(6): 101-115.
计量
  • 文章访问数:  793
  • HTML全文浏览量:  8
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-27
  • 发布日期:  2014-04-21

目录

    /

    返回文章
    返回