• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地震激励下冻土–液化土–单桩共同作用试验研究

杨润林, 杨朝晖, 乔春明, 张小雨

杨润林, 杨朝晖, 乔春明, 张小雨. 地震激励下冻土–液化土–单桩共同作用试验研究[J]. 岩土工程学报, 2014, 36(4): 612-617. DOI: 10.11779/CJGE201404003
引用本文: 杨润林, 杨朝晖, 乔春明, 张小雨. 地震激励下冻土–液化土–单桩共同作用试验研究[J]. 岩土工程学报, 2014, 36(4): 612-617. DOI: 10.11779/CJGE201404003
YANG Run-lin, YANG Zhao-hui, QIAO Chun-ming, ZHANG Xiao-yu. Experimental study on frozen soil-liquefiable soil-single pile interaction during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 612-617. DOI: 10.11779/CJGE201404003
Citation: YANG Run-lin, YANG Zhao-hui, QIAO Chun-ming, ZHANG Xiao-yu. Experimental study on frozen soil-liquefiable soil-single pile interaction during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 612-617. DOI: 10.11779/CJGE201404003

地震激励下冻土–液化土–单桩共同作用试验研究  English Version

基金项目: 中美合作研究项目(AUTC#10015)
详细信息
    作者简介:

    杨润林(1971- ),男,博士(后),副教授,主要从事的研究方向为岩土工程抗震和结构抗震。E-mail: rlyang@ustb.edu.cn。

  • 中图分类号: TU473.1;TU42.1;TU475.2

Experimental study on frozen soil-liquefiable soil-single pile interaction during earthquakes

  • 摘要: 地基土地震液化诱发的侧向扩展可导致桩基侧移过大甚至失效破坏,但如果场地存在冻土层,情况则变得复杂。通过试验研究了在地震作用下冻土、液化土和单桩三者之间的相互作用,分析了由于存在冻土层这一因素对地基液化和桩基承载性能的影响。试验中土体盛放在一个柔性模型箱当中,分为上下两层:下层为饱和砂土,上层为模拟冻土层。模拟的钢管桩嵌入土体之中,上部设有附加集中质量。测试过程中选取不同等级的调幅地震波对装置进行激励加载,分别观测桩身应变、桩与冻土层位移以及砂土内的孔隙水压力等参数。试验结果显示:地基土液化时,冻土层限制孔隙水排出而致使地基液化程度急剧发展,从而导致桩基的侧向变形快速增长;随着地震激励的增强,冻土层与桩体接触部位可能因挤压出现局部破损,导致二者分离;冻土层端面处桩体变形存在突变,此处桩体易于失效。
    Abstract: Liquefaction-induced lateral gound spreading can result in excessive lateral displacement, even failure of piles, nevertheless the situation may be somewhat different in frozen ground. Shaking table tests are conducted with the purpose of investigating the corresponding influence. The soil profile, contained in a large flexible box, consists of a horizontally saturated sand layer overlaid with a simulated frozen soil layer. The simulated steel-pipe pile is embeded in these two soil layers, with a supplemental lumped mass at the top. The device is excited through several amplitude-scaled seismic waves with different levels. During the tests the strain of the pile, the displacements of the pile and the frozen-soil layer, and the pore water pressure in the sand are recorded. Some important conclusions can be drawn. When liquefaction occurs, the frozen-soil layer can suppress the pore water drains from the saturated sand soils and make the pore water pressure increase continuously. Hence, the liquefaction has the tendency to accelerate and the lateral displacement of the pile may increase significantly. With the increasing levels of seismic excitation, the position on the frozen crust corresponding to the contact surface of the frozen-soil layer and the pile may be damaged because of squeezing, and thus the contact surface cannot be maintained effectively any longer. The sudden changes in the lateral deformation of the pile occour at the positions corresponding to the bottom and the top surface of the frozen crust, and consequently these positions on the pile can be easily damaged.
  • [1] FINN W D L, FUJITA N. Piles in liquefiable soils: seismic analysis and design issues[J]. Soil Dynamics and Earthquake Engineering, 2002, 22: 731-742.
    [2] MIWA S, IKEDA T, SATO T. Damage process of pile foundation in liquefied ground during strong ground motion[J]. Soil Dynamics and Earthquake Engineering, 2006, 26: 325-336.
    [3] PAMUKA A, GALLAGHER P M, ZIMMIE T F. Remediation of piled foundations against lateral spreading by passive site stabilization technique[J]. Soil Dynamics and Earthquake Engineering, 2007, 27: 864-874.
    [4] HALDAR S, BABU G L S. Failure mechanisms of pile foundations in liquefiable soil: parametric study[J]. International Journal of Geomechanics, 2010(10): 74-84.
    [5] LIYANAPATHIRANA D S, POULOS H G. Seismic lateral response of piles in liquefying soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131: 1466-1479.
    [6] CUBRINOVSKI M, KOKUSHO T, ISHIHARA K. Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils[J]. Soil Dynamics and Earthquake Engineering, 2006, 26: 275-286.
    [7] YAO S, KOBAYASHI K, YOSHIDA N, et al. Interactive behavior of soil-pile-superstructure system in transient state to liquefaction by means of large shake table tests[J]. Soil Dynamics and Earthquake Engineering, 2004, 24: 397-409.
    [8] HE L C, ELGAMAL A, ABDOUN T, et al. Liquefaction- induced lateral load on pile in a medium Dr sand layer[J]. Journal of Earthquake Engineering, 2009, 13: 916-938.
    [9] HAERI M S, KAVAND A, RAHMANI I, et al. Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing[J]. Soil Dynamics and Earthquake Engineering, 2012, 38: 25-45.
    [10] 黄春霞, 张鸿儒, 隋志龙. 饱和砂土地基液化特性振动台试验研究[J]. 岩土工程学报, 2006, 28(12): 2098-2103. (HUANG Chun-xia, ZHANG Hong-ru, SUI Zhi-long. Shaking table tests on liquefaction properties of saturated sand ground[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2098-2103. (in Chinese))
    [11] 袁晓铭, 李雨润, 孙锐. 地面横向往返运动下可液化土层中桩基响应机理[J]. 土木工程学报, 2008, 41(9): 103-110. (YUAN Xiao-ming, LI Yu-run, SUN Rui. Mechanism of pile foundation response in liquefiable soils under seismic cyclic ground motion[J]. China Civil Engineering Journal, 2008, 41(9): 103-110. (in Chinese))
    [12] 孔德森, 李纯洁, 凌贤长, 等. 液化场地群桩-土-结构地震相互作用振动台试验研究[J]. 岩土工程学报, 2011, 33(增刊2): 143-149. (KONG De-sen, LI Chun-jie, LING Xian-zhang, et al. Shaking table tests on pile group-soil-structure interaction to seismic loading on liquefied ground[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 143-149. (in Chinese))
  • 期刊类型引用(7)

    1. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 . 百度学术
    2. 许宇,李兴高,杨益,牟举文,苏伟林. 盾构切刀切削混凝土过程中的动态响应试验. 哈尔滨工业大学学报. 2021(05): 182-189 . 百度学术
    3. 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟. 浙江大学学报(工学版). 2020(06): 1106-1114 . 百度学术
    4. 魏世广,蒋敏敏,肖昭然,周长明. 竖向荷载作用下盾构开挖引起的桩身竖向响应分析. 三峡大学学报(自然科学版). 2020(06): 68-72 . 百度学术
    5. 王渭,蒋云鹏. 不同条件下顶管法施工对下穿隧道的作用特性研究. 交通世界. 2019(15): 122-123 . 百度学术
    6. 黄启舒,孟庆生. 公路隧道下穿既有桥梁的施工影响及工程措施研究. 公路与汽运. 2019(05): 144-146 . 百度学术
    7. 郭力,李太杰. 城市桥梁桩基施工对既有盾构隧道的影响研究. 公路工程. 2019(05): 118-122+187 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 21
出版历程
  • 收稿日期:  2012-09-19
  • 发布日期:  2014-04-21

目录

    /

    返回文章
    返回